图片解析应用
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

108 lines
3.1 KiB

  1. from sympy.combinatorics import Permutation
  2. from sympy.core.symbol import symbols
  3. from sympy.matrices import Matrix
  4. from sympy.matrices.expressions import (
  5. PermutationMatrix, BlockDiagMatrix, BlockMatrix)
  6. def test_connected_components():
  7. a, b, c, d, e, f, g, h, i, j, k, l, m = symbols('a:m')
  8. M = Matrix([
  9. [a, 0, 0, 0, b, 0, 0, 0, 0, 0, c, 0, 0],
  10. [0, d, 0, 0, 0, e, 0, 0, 0, 0, 0, f, 0],
  11. [0, 0, g, 0, 0, 0, h, 0, 0, 0, 0, 0, i],
  12. [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
  13. [m, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
  14. [0, m, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
  15. [0, 0, m, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
  16. [j, 0, 0, 0, k, 0, 0, 1, 0, 0, l, 0, 0],
  17. [0, j, 0, 0, 0, k, 0, 0, 1, 0, 0, l, 0],
  18. [0, 0, j, 0, 0, 0, k, 0, 0, 1, 0, 0, l],
  19. [0, 0, 0, 0, d, 0, 0, 0, 0, 0, 1, 0, 0],
  20. [0, 0, 0, 0, 0, d, 0, 0, 0, 0, 0, 1, 0],
  21. [0, 0, 0, 0, 0, 0, d, 0, 0, 0, 0, 0, 1]])
  22. cc = M.connected_components()
  23. assert cc == [[0, 4, 7, 10], [1, 5, 8, 11], [2, 6, 9, 12], [3]]
  24. P, B = M.connected_components_decomposition()
  25. p = Permutation([0, 4, 7, 10, 1, 5, 8, 11, 2, 6, 9, 12, 3])
  26. assert P == PermutationMatrix(p)
  27. B0 = Matrix([
  28. [a, b, 0, c],
  29. [m, 1, 0, 0],
  30. [j, k, 1, l],
  31. [0, d, 0, 1]])
  32. B1 = Matrix([
  33. [d, e, 0, f],
  34. [m, 1, 0, 0],
  35. [j, k, 1, l],
  36. [0, d, 0, 1]])
  37. B2 = Matrix([
  38. [g, h, 0, i],
  39. [m, 1, 0, 0],
  40. [j, k, 1, l],
  41. [0, d, 0, 1]])
  42. B3 = Matrix([[1]])
  43. assert B == BlockDiagMatrix(B0, B1, B2, B3)
  44. def test_strongly_connected_components():
  45. M = Matrix([
  46. [11, 14, 10, 0, 15, 0],
  47. [0, 44, 0, 0, 45, 0],
  48. [1, 4, 0, 0, 5, 0],
  49. [0, 0, 0, 22, 0, 23],
  50. [0, 54, 0, 0, 55, 0],
  51. [0, 0, 0, 32, 0, 33]])
  52. scc = M.strongly_connected_components()
  53. assert scc == [[1, 4], [0, 2], [3, 5]]
  54. P, B = M.strongly_connected_components_decomposition()
  55. p = Permutation([1, 4, 0, 2, 3, 5])
  56. assert P == PermutationMatrix(p)
  57. assert B == BlockMatrix([
  58. [
  59. Matrix([[44, 45], [54, 55]]),
  60. Matrix.zeros(2, 2),
  61. Matrix.zeros(2, 2)
  62. ],
  63. [
  64. Matrix([[14, 15], [4, 5]]),
  65. Matrix([[11, 10], [1, 0]]),
  66. Matrix.zeros(2, 2)
  67. ],
  68. [
  69. Matrix.zeros(2, 2),
  70. Matrix.zeros(2, 2),
  71. Matrix([[22, 23], [32, 33]])
  72. ]
  73. ])
  74. P = P.as_explicit()
  75. B = B.as_explicit()
  76. assert P.T * B * P == M
  77. P, B = M.strongly_connected_components_decomposition(lower=False)
  78. p = Permutation([3, 5, 0, 2, 1, 4])
  79. assert P == PermutationMatrix(p)
  80. assert B == BlockMatrix([
  81. [
  82. Matrix([[22, 23], [32, 33]]),
  83. Matrix.zeros(2, 2),
  84. Matrix.zeros(2, 2)
  85. ],
  86. [
  87. Matrix.zeros(2, 2),
  88. Matrix([[11, 10], [1, 0]]),
  89. Matrix([[14, 15], [4, 5]])
  90. ],
  91. [
  92. Matrix.zeros(2, 2),
  93. Matrix.zeros(2, 2),
  94. Matrix([[44, 45], [54, 55]])
  95. ]
  96. ])
  97. P = P.as_explicit()
  98. B = B.as_explicit()
  99. assert P.T * B * P == M