|
|
"""Hermitian conjugation."""
from sympy.core import Expr, Mul from sympy.functions.elementary.complexes import adjoint
__all__ = [ 'Dagger' ]
class Dagger(adjoint): """General Hermitian conjugate operation.
Explanation ===========
Take the Hermetian conjugate of an argument [1]_. For matrices this operation is equivalent to transpose and complex conjugate [2]_.
Parameters ==========
arg : Expr The SymPy expression that we want to take the dagger of.
Examples ========
Daggering various quantum objects:
>>> from sympy.physics.quantum.dagger import Dagger >>> from sympy.physics.quantum.state import Ket, Bra >>> from sympy.physics.quantum.operator import Operator >>> Dagger(Ket('psi')) <psi| >>> Dagger(Bra('phi')) |phi> >>> Dagger(Operator('A')) Dagger(A)
Inner and outer products::
>>> from sympy.physics.quantum import InnerProduct, OuterProduct >>> Dagger(InnerProduct(Bra('a'), Ket('b'))) <b|a> >>> Dagger(OuterProduct(Ket('a'), Bra('b'))) |b><a|
Powers, sums and products::
>>> A = Operator('A') >>> B = Operator('B') >>> Dagger(A*B) Dagger(B)*Dagger(A) >>> Dagger(A+B) Dagger(A) + Dagger(B) >>> Dagger(A**2) Dagger(A)**2
Dagger also seamlessly handles complex numbers and matrices::
>>> from sympy import Matrix, I >>> m = Matrix([[1,I],[2,I]]) >>> m Matrix([ [1, I], [2, I]]) >>> Dagger(m) Matrix([ [ 1, 2], [-I, -I]])
References ==========
.. [1] https://en.wikipedia.org/wiki/Hermitian_adjoint .. [2] https://en.wikipedia.org/wiki/Hermitian_transpose """
def __new__(cls, arg): if hasattr(arg, 'adjoint'): obj = arg.adjoint() elif hasattr(arg, 'conjugate') and hasattr(arg, 'transpose'): obj = arg.conjugate().transpose() if obj is not None: return obj return Expr.__new__(cls, arg)
def __mul__(self, other): from sympy.physics.quantum import IdentityOperator if isinstance(other, IdentityOperator): return self
return Mul(self, other)
adjoint.__name__ = "Dagger" adjoint._sympyrepr = lambda a, b: "Dagger(%s)" % b._print(a.args[0])
|