|
|
from sympy.core import S, pi, Rational from sympy.functions import assoc_laguerre, sqrt, exp, factorial, factorial2
def R_nl(n, l, nu, r): """
Returns the radial wavefunction R_{nl} for a 3d isotropic harmonic oscillator.
Parameters ==========
``n`` : The "nodal" quantum number. Corresponds to the number of nodes in the wavefunction. ``n >= 0`` ``l`` : The quantum number for orbital angular momentum. ``nu`` : mass-scaled frequency: nu = m*omega/(2*hbar) where `m` is the mass and `omega` the frequency of the oscillator. (in atomic units ``nu == omega/2``) ``r`` : Radial coordinate.
Examples ========
>>> from sympy.physics.sho import R_nl >>> from sympy.abc import r, nu, l >>> R_nl(0, 0, 1, r) 2*2**(3/4)*exp(-r**2)/pi**(1/4) >>> R_nl(1, 0, 1, r) 4*2**(1/4)*sqrt(3)*(3/2 - 2*r**2)*exp(-r**2)/(3*pi**(1/4))
l, nu and r may be symbolic:
>>> R_nl(0, 0, nu, r) 2*2**(3/4)*sqrt(nu**(3/2))*exp(-nu*r**2)/pi**(1/4) >>> R_nl(0, l, 1, r) r**l*sqrt(2**(l + 3/2)*2**(l + 2)/factorial2(2*l + 1))*exp(-r**2)/pi**(1/4)
The normalization of the radial wavefunction is:
>>> from sympy import Integral, oo >>> Integral(R_nl(0, 0, 1, r)**2*r**2, (r, 0, oo)).n() 1.00000000000000 >>> Integral(R_nl(1, 0, 1, r)**2*r**2, (r, 0, oo)).n() 1.00000000000000 >>> Integral(R_nl(1, 1, 1, r)**2*r**2, (r, 0, oo)).n() 1.00000000000000
"""
n, l, nu, r = map(S, [n, l, nu, r])
# formula uses n >= 1 (instead of nodal n >= 0) n = n + 1 C = sqrt( ((2*nu)**(l + Rational(3, 2))*2**(n + l + 1)*factorial(n - 1))/ (sqrt(pi)*(factorial2(2*n + 2*l - 1))) ) return C*r**(l)*exp(-nu*r**2)*assoc_laguerre(n - 1, l + S.Half, 2*nu*r**2)
def E_nl(n, l, hw): """
Returns the Energy of an isotropic harmonic oscillator.
Parameters ==========
``n`` : The "nodal" quantum number. ``l`` : The orbital angular momentum. ``hw`` : The harmonic oscillator parameter.
Notes =====
The unit of the returned value matches the unit of hw, since the energy is calculated as:
E_nl = (2*n + l + 3/2)*hw
Examples ========
>>> from sympy.physics.sho import E_nl >>> from sympy import symbols >>> x, y, z = symbols('x, y, z') >>> E_nl(x, y, z) z*(2*x + y + 3/2) """
return (2*n + l + Rational(3, 2))*hw
|