图片解析应用
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

23 lines
1.0 KiB

  1. from sympy.series import approximants
  2. from sympy.core.symbol import symbols
  3. from sympy.functions.combinatorial.factorials import binomial
  4. from sympy.functions.combinatorial.numbers import (fibonacci, lucas)
  5. def test_approximants():
  6. x, t = symbols("x,t")
  7. g = [lucas(k) for k in range(16)]
  8. assert [e for e in approximants(g)] == (
  9. [2, -4/(x - 2), (5*x - 2)/(3*x - 1), (x - 2)/(x**2 + x - 1)] )
  10. g = [lucas(k)+fibonacci(k+2) for k in range(16)]
  11. assert [e for e in approximants(g)] == (
  12. [3, -3/(x - 1), (3*x - 3)/(2*x - 1), -3/(x**2 + x - 1)] )
  13. g = [lucas(k)**2 for k in range(16)]
  14. assert [e for e in approximants(g)] == (
  15. [4, -16/(x - 4), (35*x - 4)/(9*x - 1), (37*x - 28)/(13*x**2 + 11*x - 7),
  16. (50*x**2 + 63*x - 52)/(37*x**2 + 19*x - 13),
  17. (-x**2 - 7*x + 4)/(x**3 - 2*x**2 - 2*x + 1)] )
  18. p = [sum(binomial(k,i)*x**i for i in range(k+1)) for k in range(16)]
  19. y = approximants(p, t, simplify=True)
  20. assert next(y) == 1
  21. assert next(y) == -1/(t*(x + 1) - 1)