|
|
"""Tests for solvers of systems of polynomial equations. """
from sympy.core.numbers import (I, Integer, Rational) from sympy.core.singleton import S from sympy.core.symbol import symbols from sympy.functions.elementary.miscellaneous import sqrt from sympy.polys.domains.rationalfield import QQ from sympy.polys.polytools import Poly from sympy.solvers.solvers import solve from sympy.utilities.iterables import flatten from sympy.abc import x, y, z from sympy.polys import PolynomialError from sympy.solvers.polysys import (solve_poly_system, solve_triangulated, solve_biquadratic, SolveFailed) from sympy.polys.polytools import parallel_poly_from_expr from sympy.testing.pytest import raises
def test_solve_poly_system(): assert solve_poly_system([x - 1], x) == [(S.One,)]
assert solve_poly_system([y - x, y - x - 1], x, y) is None
assert solve_poly_system([y - x**2, y + x**2], x, y) == [(S.Zero, S.Zero)]
assert solve_poly_system([2*x - 3, y*Rational(3, 2) - 2*x, z - 5*y], x, y, z) == \ [(Rational(3, 2), Integer(2), Integer(10))]
assert solve_poly_system([x*y - 2*y, 2*y**2 - x**2], x, y) == \ [(0, 0), (2, -sqrt(2)), (2, sqrt(2))]
assert solve_poly_system([y - x**2, y + x**2 + 1], x, y) == \ [(-I*sqrt(S.Half), Rational(-1, 2)), (I*sqrt(S.Half), Rational(-1, 2))]
f_1 = x**2 + y + z - 1 f_2 = x + y**2 + z - 1 f_3 = x + y + z**2 - 1
a, b = sqrt(2) - 1, -sqrt(2) - 1
assert solve_poly_system([f_1, f_2, f_3], x, y, z) == \ [(0, 0, 1), (0, 1, 0), (1, 0, 0), (a, a, a), (b, b, b)]
solution = [(1, -1), (1, 1)]
assert solve_poly_system([Poly(x**2 - y**2), Poly(x - 1)]) == solution assert solve_poly_system([x**2 - y**2, x - 1], x, y) == solution assert solve_poly_system([x**2 - y**2, x - 1]) == solution
assert solve_poly_system( [x + x*y - 3, y + x*y - 4], x, y) == [(-3, -2), (1, 2)]
raises(NotImplementedError, lambda: solve_poly_system([x**3 - y**3], x, y)) raises(NotImplementedError, lambda: solve_poly_system( [z, -2*x*y**2 + x + y**2*z, y**2*(-z - 4) + 2])) raises(PolynomialError, lambda: solve_poly_system([1/x], x))
raises(NotImplementedError, lambda: solve_poly_system( [x-1,], (x, y))) raises(NotImplementedError, lambda: solve_poly_system( [y-1,], (x, y)))
def test_solve_biquadratic(): x0, y0, x1, y1, r = symbols('x0 y0 x1 y1 r')
f_1 = (x - 1)**2 + (y - 1)**2 - r**2 f_2 = (x - 2)**2 + (y - 2)**2 - r**2 s = sqrt(2*r**2 - 1) a = (3 - s)/2 b = (3 + s)/2 assert solve_poly_system([f_1, f_2], x, y) == [(a, b), (b, a)]
f_1 = (x - 1)**2 + (y - 2)**2 - r**2 f_2 = (x - 1)**2 + (y - 1)**2 - r**2
assert solve_poly_system([f_1, f_2], x, y) == \ [(1 - sqrt((2*r - 1)*(2*r + 1))/2, Rational(3, 2)), (1 + sqrt((2*r - 1)*(2*r + 1))/2, Rational(3, 2))]
query = lambda expr: expr.is_Pow and expr.exp is S.Half
f_1 = (x - 1 )**2 + (y - 2)**2 - r**2 f_2 = (x - x1)**2 + (y - 1)**2 - r**2
result = solve_poly_system([f_1, f_2], x, y)
assert len(result) == 2 and all(len(r) == 2 for r in result) assert all(r.count(query) == 1 for r in flatten(result))
f_1 = (x - x0)**2 + (y - y0)**2 - r**2 f_2 = (x - x1)**2 + (y - y1)**2 - r**2
result = solve_poly_system([f_1, f_2], x, y)
assert len(result) == 2 and all(len(r) == 2 for r in result) assert all(len(r.find(query)) == 1 for r in flatten(result))
s1 = (x*y - y, x**2 - x) assert solve(s1) == [{x: 1}, {x: 0, y: 0}] s2 = (x*y - x, y**2 - y) assert solve(s2) == [{y: 1}, {x: 0, y: 0}] gens = (x, y) for seq in (s1, s2): (f, g), opt = parallel_poly_from_expr(seq, *gens) raises(SolveFailed, lambda: solve_biquadratic(f, g, opt)) seq = (x**2 + y**2 - 2, y**2 - 1) (f, g), opt = parallel_poly_from_expr(seq, *gens) assert solve_biquadratic(f, g, opt) == [ (-1, -1), (-1, 1), (1, -1), (1, 1)] ans = [(0, -1), (0, 1)] seq = (x**2 + y**2 - 1, y**2 - 1) (f, g), opt = parallel_poly_from_expr(seq, *gens) assert solve_biquadratic(f, g, opt) == ans seq = (x**2 + y**2 - 1, x**2 - x + y**2 - 1) (f, g), opt = parallel_poly_from_expr(seq, *gens) assert solve_biquadratic(f, g, opt) == ans
def test_solve_triangulated(): f_1 = x**2 + y + z - 1 f_2 = x + y**2 + z - 1 f_3 = x + y + z**2 - 1
a, b = sqrt(2) - 1, -sqrt(2) - 1
assert solve_triangulated([f_1, f_2, f_3], x, y, z) == \ [(0, 0, 1), (0, 1, 0), (1, 0, 0)]
dom = QQ.algebraic_field(sqrt(2))
assert solve_triangulated([f_1, f_2, f_3], x, y, z, domain=dom) == \ [(0, 0, 1), (0, 1, 0), (1, 0, 0), (a, a, a), (b, b, b)]
def test_solve_issue_3686(): roots = solve_poly_system([((x - 5)**2/250000 + (y - Rational(5, 10))**2/250000) - 1, x], x, y) assert roots == [(0, S.Half - 15*sqrt(1111)), (0, S.Half + 15*sqrt(1111))]
roots = solve_poly_system([((x - 5)**2/250000 + (y - 5.0/10)**2/250000) - 1, x], x, y) # TODO: does this really have to be so complicated?! assert len(roots) == 2 assert roots[0][0] == 0 assert roots[0][1].epsilon_eq(-499.474999374969, 1e12) assert roots[1][0] == 0 assert roots[1][1].epsilon_eq(500.474999374969, 1e12)
|