图片解析应用
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

579 lines
20 KiB

  1. import sys
  2. from typing import Any, Callable, Dict, Optional, Tuple, Type, Union, overload
  3. from numpy import (
  4. bool_,
  5. dtype,
  6. float32,
  7. float64,
  8. int8,
  9. int16,
  10. int32,
  11. int64,
  12. int_,
  13. ndarray,
  14. uint,
  15. uint8,
  16. uint16,
  17. uint32,
  18. uint64,
  19. )
  20. from numpy.random.bit_generator import BitGenerator
  21. from numpy.typing import (
  22. ArrayLike,
  23. _ArrayLikeFloat_co,
  24. _ArrayLikeInt_co,
  25. _DoubleCodes,
  26. _DTypeLikeBool,
  27. _DTypeLikeInt,
  28. _DTypeLikeUInt,
  29. _Float32Codes,
  30. _Float64Codes,
  31. _Int8Codes,
  32. _Int16Codes,
  33. _Int32Codes,
  34. _Int64Codes,
  35. _IntCodes,
  36. _ShapeLike,
  37. _SingleCodes,
  38. _SupportsDType,
  39. _UInt8Codes,
  40. _UInt16Codes,
  41. _UInt32Codes,
  42. _UInt64Codes,
  43. _UIntCodes,
  44. )
  45. if sys.version_info >= (3, 8):
  46. from typing import Literal
  47. else:
  48. from typing_extensions import Literal
  49. _DTypeLikeFloat32 = Union[
  50. dtype[float32],
  51. _SupportsDType[dtype[float32]],
  52. Type[float32],
  53. _Float32Codes,
  54. _SingleCodes,
  55. ]
  56. _DTypeLikeFloat64 = Union[
  57. dtype[float64],
  58. _SupportsDType[dtype[float64]],
  59. Type[float],
  60. Type[float64],
  61. _Float64Codes,
  62. _DoubleCodes,
  63. ]
  64. class RandomState:
  65. _bit_generator: BitGenerator
  66. def __init__(self, seed: Union[None, _ArrayLikeInt_co, BitGenerator] = ...) -> None: ...
  67. def __repr__(self) -> str: ...
  68. def __str__(self) -> str: ...
  69. def __getstate__(self) -> Dict[str, Any]: ...
  70. def __setstate__(self, state: Dict[str, Any]) -> None: ...
  71. def __reduce__(self) -> Tuple[Callable[[str], RandomState], Tuple[str], Dict[str, Any]]: ...
  72. def seed(self, seed: Optional[_ArrayLikeFloat_co] = ...) -> None: ...
  73. @overload
  74. def get_state(self, legacy: Literal[False] = ...) -> Dict[str, Any]: ...
  75. @overload
  76. def get_state(
  77. self, legacy: Literal[True] = ...
  78. ) -> Union[Dict[str, Any], Tuple[str, ndarray[Any, dtype[uint32]], int, int, float]]: ...
  79. def set_state(
  80. self, state: Union[Dict[str, Any], Tuple[str, ndarray[Any, dtype[uint32]], int, int, float]]
  81. ) -> None: ...
  82. @overload
  83. def random_sample(self, size: None = ...) -> float: ... # type: ignore[misc]
  84. @overload
  85. def random_sample(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ...
  86. @overload
  87. def random(self, size: None = ...) -> float: ... # type: ignore[misc]
  88. @overload
  89. def random(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ...
  90. @overload
  91. def beta(self, a: float, b: float, size: None = ...) -> float: ... # type: ignore[misc]
  92. @overload
  93. def beta(
  94. self, a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ...
  95. ) -> ndarray[Any, dtype[float64]]: ...
  96. @overload
  97. def exponential(self, scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
  98. @overload
  99. def exponential(
  100. self, scale: _ArrayLikeFloat_co = ..., size: Optional[_ShapeLike] = ...
  101. ) -> ndarray[Any, dtype[float64]]: ...
  102. @overload
  103. def standard_exponential(self, size: None = ...) -> float: ... # type: ignore[misc]
  104. @overload
  105. def standard_exponential(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ...
  106. @overload
  107. def tomaxint(self, size: None = ...) -> int: ... # type: ignore[misc]
  108. @overload
  109. def tomaxint(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[int_]]: ...
  110. @overload
  111. def randint( # type: ignore[misc]
  112. self,
  113. low: int,
  114. high: Optional[int] = ...,
  115. ) -> int: ...
  116. @overload
  117. def randint( # type: ignore[misc]
  118. self,
  119. low: int,
  120. high: Optional[int] = ...,
  121. size: None = ...,
  122. dtype: _DTypeLikeBool = ...,
  123. ) -> bool: ...
  124. @overload
  125. def randint( # type: ignore[misc]
  126. self,
  127. low: int,
  128. high: Optional[int] = ...,
  129. size: None = ...,
  130. dtype: Union[_DTypeLikeInt, _DTypeLikeUInt] = ...,
  131. ) -> int: ...
  132. @overload
  133. def randint( # type: ignore[misc]
  134. self,
  135. low: _ArrayLikeInt_co,
  136. high: Optional[_ArrayLikeInt_co] = ...,
  137. size: Optional[_ShapeLike] = ...,
  138. ) -> ndarray[Any, dtype[int_]]: ...
  139. @overload
  140. def randint( # type: ignore[misc]
  141. self,
  142. low: _ArrayLikeInt_co,
  143. high: Optional[_ArrayLikeInt_co] = ...,
  144. size: Optional[_ShapeLike] = ...,
  145. dtype: _DTypeLikeBool = ...,
  146. ) -> ndarray[Any, dtype[bool_]]: ...
  147. @overload
  148. def randint( # type: ignore[misc]
  149. self,
  150. low: _ArrayLikeInt_co,
  151. high: Optional[_ArrayLikeInt_co] = ...,
  152. size: Optional[_ShapeLike] = ...,
  153. dtype: Union[dtype[int8], Type[int8], _Int8Codes, _SupportsDType[dtype[int8]]] = ...,
  154. ) -> ndarray[Any, dtype[int8]]: ...
  155. @overload
  156. def randint( # type: ignore[misc]
  157. self,
  158. low: _ArrayLikeInt_co,
  159. high: Optional[_ArrayLikeInt_co] = ...,
  160. size: Optional[_ShapeLike] = ...,
  161. dtype: Union[dtype[int16], Type[int16], _Int16Codes, _SupportsDType[dtype[int16]]] = ...,
  162. ) -> ndarray[Any, dtype[int16]]: ...
  163. @overload
  164. def randint( # type: ignore[misc]
  165. self,
  166. low: _ArrayLikeInt_co,
  167. high: Optional[_ArrayLikeInt_co] = ...,
  168. size: Optional[_ShapeLike] = ...,
  169. dtype: Union[dtype[int32], Type[int32], _Int32Codes, _SupportsDType[dtype[int32]]] = ...,
  170. ) -> ndarray[Any, dtype[Union[int32]]]: ...
  171. @overload
  172. def randint( # type: ignore[misc]
  173. self,
  174. low: _ArrayLikeInt_co,
  175. high: Optional[_ArrayLikeInt_co] = ...,
  176. size: Optional[_ShapeLike] = ...,
  177. dtype: Optional[
  178. Union[dtype[int64], Type[int64], _Int64Codes, _SupportsDType[dtype[int64]]]
  179. ] = ...,
  180. ) -> ndarray[Any, dtype[int64]]: ...
  181. @overload
  182. def randint( # type: ignore[misc]
  183. self,
  184. low: _ArrayLikeInt_co,
  185. high: Optional[_ArrayLikeInt_co] = ...,
  186. size: Optional[_ShapeLike] = ...,
  187. dtype: Union[dtype[uint8], Type[uint8], _UInt8Codes, _SupportsDType[dtype[uint8]]] = ...,
  188. ) -> ndarray[Any, dtype[uint8]]: ...
  189. @overload
  190. def randint( # type: ignore[misc]
  191. self,
  192. low: _ArrayLikeInt_co,
  193. high: Optional[_ArrayLikeInt_co] = ...,
  194. size: Optional[_ShapeLike] = ...,
  195. dtype: Union[
  196. dtype[uint16], Type[uint16], _UInt16Codes, _SupportsDType[dtype[uint16]]
  197. ] = ...,
  198. ) -> ndarray[Any, dtype[Union[uint16]]]: ...
  199. @overload
  200. def randint( # type: ignore[misc]
  201. self,
  202. low: _ArrayLikeInt_co,
  203. high: Optional[_ArrayLikeInt_co] = ...,
  204. size: Optional[_ShapeLike] = ...,
  205. dtype: Union[
  206. dtype[uint32], Type[uint32], _UInt32Codes, _SupportsDType[dtype[uint32]]
  207. ] = ...,
  208. ) -> ndarray[Any, dtype[uint32]]: ...
  209. @overload
  210. def randint( # type: ignore[misc]
  211. self,
  212. low: _ArrayLikeInt_co,
  213. high: Optional[_ArrayLikeInt_co] = ...,
  214. size: Optional[_ShapeLike] = ...,
  215. dtype: Union[
  216. dtype[uint64], Type[uint64], _UInt64Codes, _SupportsDType[dtype[uint64]]
  217. ] = ...,
  218. ) -> ndarray[Any, dtype[uint64]]: ...
  219. @overload
  220. def randint( # type: ignore[misc]
  221. self,
  222. low: _ArrayLikeInt_co,
  223. high: Optional[_ArrayLikeInt_co] = ...,
  224. size: Optional[_ShapeLike] = ...,
  225. dtype: Union[
  226. dtype[int_], Type[int], Type[int_], _IntCodes, _SupportsDType[dtype[int_]]
  227. ] = ...,
  228. ) -> ndarray[Any, dtype[int_]]: ...
  229. @overload
  230. def randint( # type: ignore[misc]
  231. self,
  232. low: _ArrayLikeInt_co,
  233. high: Optional[_ArrayLikeInt_co] = ...,
  234. size: Optional[_ShapeLike] = ...,
  235. dtype: Union[dtype[uint], Type[uint], _UIntCodes, _SupportsDType[dtype[uint]]] = ...,
  236. ) -> ndarray[Any, dtype[uint]]: ...
  237. def bytes(self, length: int) -> bytes: ...
  238. @overload
  239. def choice(
  240. self,
  241. a: int,
  242. size: None = ...,
  243. replace: bool = ...,
  244. p: Optional[_ArrayLikeFloat_co] = ...,
  245. ) -> int: ...
  246. @overload
  247. def choice(
  248. self,
  249. a: int,
  250. size: _ShapeLike = ...,
  251. replace: bool = ...,
  252. p: Optional[_ArrayLikeFloat_co] = ...,
  253. ) -> ndarray[Any, dtype[int_]]: ...
  254. @overload
  255. def choice(
  256. self,
  257. a: ArrayLike,
  258. size: None = ...,
  259. replace: bool = ...,
  260. p: Optional[_ArrayLikeFloat_co] = ...,
  261. ) -> Any: ...
  262. @overload
  263. def choice(
  264. self,
  265. a: ArrayLike,
  266. size: _ShapeLike = ...,
  267. replace: bool = ...,
  268. p: Optional[_ArrayLikeFloat_co] = ...,
  269. ) -> ndarray[Any, Any]: ...
  270. @overload
  271. def uniform(self, low: float = ..., high: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
  272. @overload
  273. def uniform(
  274. self,
  275. low: _ArrayLikeFloat_co = ...,
  276. high: _ArrayLikeFloat_co = ...,
  277. size: Optional[_ShapeLike] = ...,
  278. ) -> ndarray[Any, dtype[float64]]: ...
  279. @overload
  280. def rand(self) -> float: ...
  281. @overload
  282. def rand(self, *args: int) -> ndarray[Any, dtype[float64]]: ...
  283. @overload
  284. def randn(self) -> float: ...
  285. @overload
  286. def randn(self, *args: int) -> ndarray[Any, dtype[float64]]: ...
  287. @overload
  288. def random_integers(self, low: int, high: Optional[int] = ..., size: None = ...) -> int: ... # type: ignore[misc]
  289. @overload
  290. def random_integers(
  291. self,
  292. low: _ArrayLikeInt_co,
  293. high: Optional[_ArrayLikeInt_co] = ...,
  294. size: Optional[_ShapeLike] = ...,
  295. ) -> ndarray[Any, dtype[int_]]: ...
  296. @overload
  297. def standard_normal(self, size: None = ...) -> float: ... # type: ignore[misc]
  298. @overload
  299. def standard_normal( # type: ignore[misc]
  300. self, size: _ShapeLike = ...
  301. ) -> ndarray[Any, dtype[float64]]: ...
  302. @overload
  303. def normal(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
  304. @overload
  305. def normal(
  306. self,
  307. loc: _ArrayLikeFloat_co = ...,
  308. scale: _ArrayLikeFloat_co = ...,
  309. size: Optional[_ShapeLike] = ...,
  310. ) -> ndarray[Any, dtype[float64]]: ...
  311. @overload
  312. def standard_gamma( # type: ignore[misc]
  313. self,
  314. shape: float,
  315. size: None = ...,
  316. ) -> float: ...
  317. @overload
  318. def standard_gamma(
  319. self,
  320. shape: _ArrayLikeFloat_co,
  321. size: Optional[_ShapeLike] = ...,
  322. ) -> ndarray[Any, dtype[float64]]: ...
  323. @overload
  324. def gamma(self, shape: float, scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
  325. @overload
  326. def gamma(
  327. self,
  328. shape: _ArrayLikeFloat_co,
  329. scale: _ArrayLikeFloat_co = ...,
  330. size: Optional[_ShapeLike] = ...,
  331. ) -> ndarray[Any, dtype[float64]]: ...
  332. @overload
  333. def f(self, dfnum: float, dfden: float, size: None = ...) -> float: ... # type: ignore[misc]
  334. @overload
  335. def f(
  336. self, dfnum: _ArrayLikeFloat_co, dfden: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ...
  337. ) -> ndarray[Any, dtype[float64]]: ...
  338. @overload
  339. def noncentral_f(self, dfnum: float, dfden: float, nonc: float, size: None = ...) -> float: ... # type: ignore[misc]
  340. @overload
  341. def noncentral_f(
  342. self,
  343. dfnum: _ArrayLikeFloat_co,
  344. dfden: _ArrayLikeFloat_co,
  345. nonc: _ArrayLikeFloat_co,
  346. size: Optional[_ShapeLike] = ...,
  347. ) -> ndarray[Any, dtype[float64]]: ...
  348. @overload
  349. def chisquare(self, df: float, size: None = ...) -> float: ... # type: ignore[misc]
  350. @overload
  351. def chisquare(
  352. self, df: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ...
  353. ) -> ndarray[Any, dtype[float64]]: ...
  354. @overload
  355. def noncentral_chisquare(self, df: float, nonc: float, size: None = ...) -> float: ... # type: ignore[misc]
  356. @overload
  357. def noncentral_chisquare(
  358. self, df: _ArrayLikeFloat_co, nonc: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ...
  359. ) -> ndarray[Any, dtype[float64]]: ...
  360. @overload
  361. def standard_t(self, df: float, size: None = ...) -> float: ... # type: ignore[misc]
  362. @overload
  363. def standard_t(
  364. self, df: _ArrayLikeFloat_co, size: None = ...
  365. ) -> ndarray[Any, dtype[float64]]: ...
  366. @overload
  367. def standard_t(
  368. self, df: _ArrayLikeFloat_co, size: _ShapeLike = ...
  369. ) -> ndarray[Any, dtype[float64]]: ...
  370. @overload
  371. def vonmises(self, mu: float, kappa: float, size: None = ...) -> float: ... # type: ignore[misc]
  372. @overload
  373. def vonmises(
  374. self, mu: _ArrayLikeFloat_co, kappa: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ...
  375. ) -> ndarray[Any, dtype[float64]]: ...
  376. @overload
  377. def pareto(self, a: float, size: None = ...) -> float: ... # type: ignore[misc]
  378. @overload
  379. def pareto(
  380. self, a: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ...
  381. ) -> ndarray[Any, dtype[float64]]: ...
  382. @overload
  383. def weibull(self, a: float, size: None = ...) -> float: ... # type: ignore[misc]
  384. @overload
  385. def weibull(
  386. self, a: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ...
  387. ) -> ndarray[Any, dtype[float64]]: ...
  388. @overload
  389. def power(self, a: float, size: None = ...) -> float: ... # type: ignore[misc]
  390. @overload
  391. def power(
  392. self, a: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ...
  393. ) -> ndarray[Any, dtype[float64]]: ...
  394. @overload
  395. def standard_cauchy(self, size: None = ...) -> float: ... # type: ignore[misc]
  396. @overload
  397. def standard_cauchy(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ...
  398. @overload
  399. def laplace(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
  400. @overload
  401. def laplace(
  402. self,
  403. loc: _ArrayLikeFloat_co = ...,
  404. scale: _ArrayLikeFloat_co = ...,
  405. size: Optional[_ShapeLike] = ...,
  406. ) -> ndarray[Any, dtype[float64]]: ...
  407. @overload
  408. def gumbel(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
  409. @overload
  410. def gumbel(
  411. self,
  412. loc: _ArrayLikeFloat_co = ...,
  413. scale: _ArrayLikeFloat_co = ...,
  414. size: Optional[_ShapeLike] = ...,
  415. ) -> ndarray[Any, dtype[float64]]: ...
  416. @overload
  417. def logistic(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
  418. @overload
  419. def logistic(
  420. self,
  421. loc: _ArrayLikeFloat_co = ...,
  422. scale: _ArrayLikeFloat_co = ...,
  423. size: Optional[_ShapeLike] = ...,
  424. ) -> ndarray[Any, dtype[float64]]: ...
  425. @overload
  426. def lognormal(self, mean: float = ..., sigma: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
  427. @overload
  428. def lognormal(
  429. self,
  430. mean: _ArrayLikeFloat_co = ...,
  431. sigma: _ArrayLikeFloat_co = ...,
  432. size: Optional[_ShapeLike] = ...,
  433. ) -> ndarray[Any, dtype[float64]]: ...
  434. @overload
  435. def rayleigh(self, scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
  436. @overload
  437. def rayleigh(
  438. self, scale: _ArrayLikeFloat_co = ..., size: Optional[_ShapeLike] = ...
  439. ) -> ndarray[Any, dtype[float64]]: ...
  440. @overload
  441. def wald(self, mean: float, scale: float, size: None = ...) -> float: ... # type: ignore[misc]
  442. @overload
  443. def wald(
  444. self, mean: _ArrayLikeFloat_co, scale: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ...
  445. ) -> ndarray[Any, dtype[float64]]: ...
  446. @overload
  447. def triangular(self, left: float, mode: float, right: float, size: None = ...) -> float: ... # type: ignore[misc]
  448. @overload
  449. def triangular(
  450. self,
  451. left: _ArrayLikeFloat_co,
  452. mode: _ArrayLikeFloat_co,
  453. right: _ArrayLikeFloat_co,
  454. size: Optional[_ShapeLike] = ...,
  455. ) -> ndarray[Any, dtype[float64]]: ...
  456. @overload
  457. def binomial(self, n: int, p: float, size: None = ...) -> int: ... # type: ignore[misc]
  458. @overload
  459. def binomial(
  460. self, n: _ArrayLikeInt_co, p: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ...
  461. ) -> ndarray[Any, dtype[int_]]: ...
  462. @overload
  463. def negative_binomial(self, n: float, p: float, size: None = ...) -> int: ... # type: ignore[misc]
  464. @overload
  465. def negative_binomial(
  466. self, n: _ArrayLikeFloat_co, p: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ...
  467. ) -> ndarray[Any, dtype[int_]]: ...
  468. @overload
  469. def poisson(self, lam: float = ..., size: None = ...) -> int: ... # type: ignore[misc]
  470. @overload
  471. def poisson(
  472. self, lam: _ArrayLikeFloat_co = ..., size: Optional[_ShapeLike] = ...
  473. ) -> ndarray[Any, dtype[int_]]: ...
  474. @overload
  475. def zipf(self, a: float, size: None = ...) -> int: ... # type: ignore[misc]
  476. @overload
  477. def zipf(
  478. self, a: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ...
  479. ) -> ndarray[Any, dtype[int_]]: ...
  480. @overload
  481. def geometric(self, p: float, size: None = ...) -> int: ... # type: ignore[misc]
  482. @overload
  483. def geometric(
  484. self, p: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ...
  485. ) -> ndarray[Any, dtype[int_]]: ...
  486. @overload
  487. def hypergeometric(self, ngood: int, nbad: int, nsample: int, size: None = ...) -> int: ... # type: ignore[misc]
  488. @overload
  489. def hypergeometric(
  490. self,
  491. ngood: _ArrayLikeInt_co,
  492. nbad: _ArrayLikeInt_co,
  493. nsample: _ArrayLikeInt_co,
  494. size: Optional[_ShapeLike] = ...,
  495. ) -> ndarray[Any, dtype[int_]]: ...
  496. @overload
  497. def logseries(self, p: float, size: None = ...) -> int: ... # type: ignore[misc]
  498. @overload
  499. def logseries(
  500. self, p: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ...
  501. ) -> ndarray[Any, dtype[int_]]: ...
  502. def multivariate_normal(
  503. self,
  504. mean: _ArrayLikeFloat_co,
  505. cov: _ArrayLikeFloat_co,
  506. size: Optional[_ShapeLike] = ...,
  507. check_valid: Literal["warn", "raise", "ignore"] = ...,
  508. tol: float = ...,
  509. ) -> ndarray[Any, dtype[float64]]: ...
  510. def multinomial(
  511. self, n: _ArrayLikeInt_co, pvals: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ...
  512. ) -> ndarray[Any, dtype[int_]]: ...
  513. def dirichlet(
  514. self, alpha: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ...
  515. ) -> ndarray[Any, dtype[float64]]: ...
  516. def shuffle(self, x: ArrayLike) -> None: ...
  517. @overload
  518. def permutation(self, x: int) -> ndarray[Any, dtype[int_]]: ...
  519. @overload
  520. def permutation(self, x: ArrayLike) -> ndarray[Any, Any]: ...
  521. _rand: RandomState
  522. beta = _rand.beta
  523. binomial = _rand.binomial
  524. bytes = _rand.bytes
  525. chisquare = _rand.chisquare
  526. choice = _rand.choice
  527. dirichlet = _rand.dirichlet
  528. exponential = _rand.exponential
  529. f = _rand.f
  530. gamma = _rand.gamma
  531. get_state = _rand.get_state
  532. geometric = _rand.geometric
  533. gumbel = _rand.gumbel
  534. hypergeometric = _rand.hypergeometric
  535. laplace = _rand.laplace
  536. logistic = _rand.logistic
  537. lognormal = _rand.lognormal
  538. logseries = _rand.logseries
  539. multinomial = _rand.multinomial
  540. multivariate_normal = _rand.multivariate_normal
  541. negative_binomial = _rand.negative_binomial
  542. noncentral_chisquare = _rand.noncentral_chisquare
  543. noncentral_f = _rand.noncentral_f
  544. normal = _rand.normal
  545. pareto = _rand.pareto
  546. permutation = _rand.permutation
  547. poisson = _rand.poisson
  548. power = _rand.power
  549. rand = _rand.rand
  550. randint = _rand.randint
  551. randn = _rand.randn
  552. random = _rand.random
  553. random_integers = _rand.random_integers
  554. random_sample = _rand.random_sample
  555. rayleigh = _rand.rayleigh
  556. seed = _rand.seed
  557. set_state = _rand.set_state
  558. shuffle = _rand.shuffle
  559. standard_cauchy = _rand.standard_cauchy
  560. standard_exponential = _rand.standard_exponential
  561. standard_gamma = _rand.standard_gamma
  562. standard_normal = _rand.standard_normal
  563. standard_t = _rand.standard_t
  564. triangular = _rand.triangular
  565. uniform = _rand.uniform
  566. vonmises = _rand.vonmises
  567. wald = _rand.wald
  568. weibull = _rand.weibull
  569. zipf = _rand.zipf
  570. # Two legacy that are trivial wrappers around random_sample
  571. sample = _rand.random_sample
  572. ranf = _rand.random_sample