图片解析应用
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

36 lines
1.1 KiB

  1. from sympy.physics.quantum import Dagger, AntiCommutator, qapply
  2. from sympy.physics.quantum.fermion import FermionOp
  3. from sympy.physics.quantum.fermion import FermionFockKet, FermionFockBra
  4. def test_fermionoperator():
  5. c = FermionOp('c')
  6. d = FermionOp('d')
  7. assert isinstance(c, FermionOp)
  8. assert isinstance(Dagger(c), FermionOp)
  9. assert c.is_annihilation
  10. assert not Dagger(c).is_annihilation
  11. assert FermionOp("c") == FermionOp("c", True)
  12. assert FermionOp("c") != FermionOp("d")
  13. assert FermionOp("c", True) != FermionOp("c", False)
  14. assert AntiCommutator(c, Dagger(c)).doit() == 1
  15. assert AntiCommutator(c, Dagger(d)).doit() == c * Dagger(d) + Dagger(d) * c
  16. def test_fermion_states():
  17. c = FermionOp("c")
  18. # Fock states
  19. assert (FermionFockBra(0) * FermionFockKet(1)).doit() == 0
  20. assert (FermionFockBra(1) * FermionFockKet(1)).doit() == 1
  21. assert qapply(c * FermionFockKet(1)) == FermionFockKet(0)
  22. assert qapply(c * FermionFockKet(0)) == 0
  23. assert qapply(Dagger(c) * FermionFockKet(0)) == FermionFockKet(1)
  24. assert qapply(Dagger(c) * FermionFockKet(1)) == 0