图片解析应用
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

75 lines
2.9 KiB

  1. from sympy.core.numbers import Rational
  2. from sympy.core.symbol import symbols
  3. from sympy.functions.combinatorial.factorials import (FallingFactorial, RisingFactorial, binomial, factorial)
  4. from sympy.functions.special.gamma_functions import gamma
  5. from sympy.simplify.combsimp import combsimp
  6. from sympy.abc import x
  7. def test_combsimp():
  8. k, m, n = symbols('k m n', integer = True)
  9. assert combsimp(factorial(n)) == factorial(n)
  10. assert combsimp(binomial(n, k)) == binomial(n, k)
  11. assert combsimp(factorial(n)/factorial(n - 3)) == n*(-1 + n)*(-2 + n)
  12. assert combsimp(binomial(n + 1, k + 1)/binomial(n, k)) == (1 + n)/(1 + k)
  13. assert combsimp(binomial(3*n + 4, n + 1)/binomial(3*n + 1, n)) == \
  14. Rational(3, 2)*((3*n + 2)*(3*n + 4)/((n + 1)*(2*n + 3)))
  15. assert combsimp(factorial(n)**2/factorial(n - 3)) == \
  16. factorial(n)*n*(-1 + n)*(-2 + n)
  17. assert combsimp(factorial(n)*binomial(n + 1, k + 1)/binomial(n, k)) == \
  18. factorial(n + 1)/(1 + k)
  19. assert combsimp(gamma(n + 3)) == factorial(n + 2)
  20. assert combsimp(factorial(x)) == gamma(x + 1)
  21. # issue 9699
  22. assert combsimp((n + 1)*factorial(n)) == factorial(n + 1)
  23. assert combsimp(factorial(n)/n) == factorial(n-1)
  24. # issue 6658
  25. assert combsimp(binomial(n, n - k)) == binomial(n, k)
  26. # issue 6341, 7135
  27. assert combsimp(factorial(n)/(factorial(k)*factorial(n - k))) == \
  28. binomial(n, k)
  29. assert combsimp(factorial(k)*factorial(n - k)/factorial(n)) == \
  30. 1/binomial(n, k)
  31. assert combsimp(factorial(2*n)/factorial(n)**2) == binomial(2*n, n)
  32. assert combsimp(factorial(2*n)*factorial(k)*factorial(n - k)/
  33. factorial(n)**3) == binomial(2*n, n)/binomial(n, k)
  34. assert combsimp(factorial(n*(1 + n) - n**2 - n)) == 1
  35. assert combsimp(6*FallingFactorial(-4, n)/factorial(n)) == \
  36. (-1)**n*(n + 1)*(n + 2)*(n + 3)
  37. assert combsimp(6*FallingFactorial(-4, n - 1)/factorial(n - 1)) == \
  38. (-1)**(n - 1)*n*(n + 1)*(n + 2)
  39. assert combsimp(6*FallingFactorial(-4, n - 3)/factorial(n - 3)) == \
  40. (-1)**(n - 3)*n*(n - 1)*(n - 2)
  41. assert combsimp(6*FallingFactorial(-4, -n - 1)/factorial(-n - 1)) == \
  42. -(-1)**(-n - 1)*n*(n - 1)*(n - 2)
  43. assert combsimp(6*RisingFactorial(4, n)/factorial(n)) == \
  44. (n + 1)*(n + 2)*(n + 3)
  45. assert combsimp(6*RisingFactorial(4, n - 1)/factorial(n - 1)) == \
  46. n*(n + 1)*(n + 2)
  47. assert combsimp(6*RisingFactorial(4, n - 3)/factorial(n - 3)) == \
  48. n*(n - 1)*(n - 2)
  49. assert combsimp(6*RisingFactorial(4, -n - 1)/factorial(-n - 1)) == \
  50. -n*(n - 1)*(n - 2)
  51. def test_issue_6878():
  52. n = symbols('n', integer=True)
  53. assert combsimp(RisingFactorial(-10, n)) == 3628800*(-1)**n/factorial(10 - n)
  54. def test_issue_14528():
  55. p = symbols("p", integer=True, positive=True)
  56. assert combsimp(binomial(1,p)) == 1/(factorial(p)*factorial(1-p))
  57. assert combsimp(factorial(2-p)) == factorial(2-p)