图片解析应用
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

359 lines
13 KiB

# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
# --------------------------------------------------------------------------
from logging import getLogger
import numpy as np
from fusion_base import Fusion
from fusion_gpt_attention import FusionGptAttentionPastBase
from fusion_utils import FusionUtils
from onnx import TensorProto, helper, numpy_helper
from onnx_model import OnnxModel
logger = getLogger(__name__)
def is_close(value, expected_value):
return abs(value - expected_value) <= 1e-6
class FusionGptAttentionMegatron(FusionGptAttentionPastBase):
"""
Fuse GPT-2 Attention with past state subgraph from Megatron into one Attention node.
"""
def __init__(self, model: OnnxModel, num_heads: int):
super().__init__(model, num_heads)
def fuse_attention_node(
self,
matmul_before_split,
add_before_split,
past,
present,
input,
reshape_qkv,
mask,
):
attention_node_name = self.model.create_node_name("GptAttention")
int32_mask = self.cast_attention_mask(mask)
output = reshape_qkv.output[0]
i = 1 if (add_before_split.input[0] == matmul_before_split.output[0]) else 0
attention_node = helper.make_node(
"Attention",
inputs=[
input,
matmul_before_split.input[1],
add_before_split.input[i],
int32_mask,
past,
],
outputs=[output, present],
name=attention_node_name,
)
attention_node.domain = "com.microsoft"
attention_node.attribute.extend(
[
helper.make_attribute("num_heads", self.num_heads),
helper.make_attribute("unidirectional", 0), # unidirectional shall not be ON for 4D attention mask
]
)
if self.mask_filter_value is not None:
attention_node.attribute.extend([helper.make_attribute("mask_filter_value", float(self.mask_filter_value))])
nodes_to_add = [attention_node]
self.nodes_to_add.extend(nodes_to_add)
for node in nodes_to_add:
self.node_name_to_graph_name[node.name] = self.this_graph_name
self.nodes_to_remove.append(reshape_qkv)
# we rely on prune_graph() to clean old subgraph nodes
self.prune_graph = True
def match_mask(self, sub_qk, mul_qk, matmul_qk, layernorm_before_attention):
mask_nodes = self.model.match_parent_path(
sub_qk, ["Mul", "Sub", "Slice", "Slice"], [1, 0, 1, 0]
) # yapf: disable
if mask_nodes is None:
logger.debug("fuse_attention: failed to match unidirectional mask path")
return None
(mul_mask, sub_mask, last_slice_mask, slice_mask) = mask_nodes
if len(mask_nodes) > 1 and mask_nodes[0].op_type == "Mul":
_, mul_val = self.model.get_constant_input(mask_nodes[0])
if mul_val != 10000:
self.mask_filter_value = -mul_val
if mul_qk.input[1] != last_slice_mask.output[0]:
logger.debug("fuse_attention failed: mul_qk.input[1] != last_slice_mask.output[0]")
return None
if not self.utils.check_node_input_value(mul_mask, 1, 10000.0):
logger.debug("fuse_attention failed: mul_mask input 1 is not constant 10000.0")
return None
if not self.utils.check_node_input_value(sub_mask, 0, 1.0):
logger.debug("fuse_attention failed: sub_mask input 0 is not constant 1.0")
return None
if not self.model.find_graph_input(slice_mask.input[0]):
logger.info("expect slick_mask input 0 to be graph input")
return None
if not self.utils.check_node_input_value(last_slice_mask, 1, [0]):
logger.debug("fuse_attention failed: last_slice_mask input 1 (starts) is not constant [0]")
return None
if not self.utils.check_node_input_value(last_slice_mask, 3, [3]):
logger.debug("fuse_attention failed: last_slice_mask input 3 (axes) is not constant [3]")
return False
if not self.utils.check_node_input_value(last_slice_mask, 4, [1]):
logger.debug("fuse_attention failed: last_slice_mask input 4 (steps) is not constant [1]")
return False
if not self.utils.check_node_input_value(slice_mask, 3, [2]):
logger.debug("fuse_attention failed: slice_mask input 3 (axes) is not constant [2]")
return None
if not self.utils.check_node_input_value(slice_mask, 4, [1]):
logger.debug("fuse_attention failed: slice_mask input 4 (steps) is not constant [1]")
return None
last_slice_path = self.model.match_parent_path(
last_slice_mask, ["Unsqueeze", "Gather", "Shape", "MatMul"], [2, 0, 0, 0]
)
if last_slice_path is None or last_slice_path[-1] != matmul_qk:
logger.debug("fuse_attention: failed to match last slice path")
return None
first_slice_path = self.model.match_parent_path(
slice_mask, ["Unsqueeze", "Gather", "Shape", "MatMul"], [2, 0, 0, 0]
)
if first_slice_path is None or first_slice_path[-1] != matmul_qk:
logger.debug("fuse_attention: failed to match first slice path")
return None
first_slice_sub = self.model.match_parent_path(
slice_mask,
["Unsqueeze", "Sub", "Gather", "Shape", "MatMul"],
[1, 0, 0, 0, 0],
)
if first_slice_sub is None or first_slice_sub[-1] != matmul_qk:
logger.debug("fuse_attention: failed to match last slice sub path")
return None
first_slice_sub_1 = self.model.match_parent_path(
slice_mask,
["Unsqueeze", "Sub", "Gather", "Shape", "LayerNormalization"],
[1, 0, 1, 0, 0],
)
if first_slice_sub_1 is None:
first_slice_sub_1 = self.model.match_parent_path(
slice_mask,
["Unsqueeze", "Sub", "Gather", "Shape", "SkipLayerNormalization"],
[1, 0, 1, 0, 0],
)
if first_slice_sub_1 is None or first_slice_sub_1[-1] != layernorm_before_attention:
logger.debug("fuse_attention: failed to match last slice sub path 1")
return None
return slice_mask.input[0]
def fuse(self, normalize_node, input_name_to_nodes, output_name_to_node):
past = None
present = None
is_normalize_node_skiplayernorm = normalize_node.op_type == "SkipLayerNormalization"
qkv_nodes = None
if not is_normalize_node_skiplayernorm:
qkv_nodes = self.model.match_parent_path(
normalize_node,
["Add", "Add", "MatMul", "Reshape", "Transpose", "MatMul"],
[0, 1, None, 0, 0, 0],
output_name_to_node=output_name_to_node,
) # yapf: disable
else:
qkv_nodes = self.model.match_parent_path(
normalize_node,
["Add", "MatMul", "Reshape", "Transpose", "MatMul"],
[1, None, 0, 0, 0],
output_name_to_node=output_name_to_node,
) # yapf: disable
if qkv_nodes is None:
return
skip_input = None
if not is_normalize_node_skiplayernorm:
(
add_skip,
add_after_attention,
matmul_after_attention,
reshape_qkv,
transpose_qkv,
matmul_qkv,
) = qkv_nodes
skip_input = add_skip.input[0]
else:
(
add_after_attention,
matmul_after_attention,
reshape_qkv,
transpose_qkv,
matmul_qkv,
) = qkv_nodes
skip_input = normalize_node.input[0]
v_nodes = self.model.match_parent_path(
matmul_qkv,
[
"Concat",
"Transpose",
"Reshape",
"Split",
"Add",
"MatMul",
"LayerNormalization",
],
[1, 1, 0, 0, 0, None, 0],
) # yapf: disable
if v_nodes is None:
v_nodes = self.model.match_parent_path(
matmul_qkv,
[
"Concat",
"Transpose",
"Reshape",
"Split",
"Add",
"MatMul",
"SkipLayerNormalization",
],
[1, 1, 0, 0, 0, None, 0],
) # yapf: disable
if v_nodes is None:
logger.debug("fuse_attention: failed to match v path")
return
(
concat_v,
transpose_v,
reshape_v,
split_v,
add_before_split,
matmul_before_split,
layernorm_before_attention,
) = v_nodes
if (
layernorm_before_attention.op_type == "LayerNormalization"
and skip_input != layernorm_before_attention.input[0]
):
logger.debug("fuse_attention: skip_input != layernorm_before_attention.input[0]")
return
if (
layernorm_before_attention.op_type == "SkipLayerNormalization"
and skip_input != layernorm_before_attention.output[3]
):
logger.debug("fuse_attention: skip_input != layernorm_before_attention.input[0]")
return
qk_nodes = self.model.match_parent_path(matmul_qkv, ["Softmax", "Sub", "Mul", "MatMul"], [0, 0, 0, 0])
if qk_nodes is None:
logger.debug("fuse_attention: failed to match qk path")
return None
(softmax_qk, sub_qk, mul_qk, matmul_qk) = qk_nodes
if self.model.get_node_attribute(softmax_qk, "axis") != 3:
logger.debug("fuse_attention failed: softmax_qk axis != 3")
return None
attention_mask = self.match_mask(sub_qk, mul_qk, matmul_qk, layernorm_before_attention)
q_nodes = self.model.match_parent_path(matmul_qk, ["Div", "Transpose", "Reshape", "Split"], [0, 0, 0, 0])
if q_nodes is None:
logger.debug("fuse_attention: failed to match q path")
return
(div_q, transpose_q, reshape_q, split_q) = q_nodes
if split_v != split_q:
logger.debug("fuse_attention: skip since split_v != split_q")
return
k_nodes = self.model.match_parent_path(
matmul_qk,
["Div", "Transpose", "Concat", "Transpose", "Reshape", "Split"],
[1, 0, 0, 1, 0, 0],
)
if k_nodes is None:
logger.debug("fuse_attention: failed to match k path")
return
(div_k, _, concat_k, transpose_k, reshape_k, split_k) = k_nodes
if split_v != split_k:
logger.debug("fuse_attention: skip since split_v != split_k")
return
i, value = self.model.get_constant_input(reshape_k)
if not (
isinstance(value, np.ndarray)
and list(value.shape) == [4]
and value[0] == 0
and value[1] == 0
and value[2] > 0
and value[3] > 0
):
logger.debug("fuse_attention: reshape constant input is not [0, 0, N, H]")
return
num_heads = value[2]
if num_heads != self.num_heads:
logger.info(f"Detected num_heads={num_heads}. Ignore user specified value {self.num_heads}")
self.num_heads = num_heads
hidden_size_per_head = value[3]
i, value = self.model.get_constant_input(div_k)
expected_value = float(np.sqrt(np.sqrt(hidden_size_per_head)))
if not is_close(value, expected_value):
logger.debug(f"fuse_attention: div_k value={value} expected={expected_value}")
return
i, value = self.model.get_constant_input(div_q)
if not is_close(value, expected_value):
logger.debug(f"fuse_attention: div_q value={value} expected={expected_value}")
return
# Match past and present paths
past = self.match_past_pattern_2(concat_k, concat_v, output_name_to_node)
if past is None:
logger.debug("fuse_attention: match past failed")
return
if not self.model.find_graph_input(past):
logger.debug("fuse_attention: past is not graph input.")
# For GPT2LMHeadModel_BeamSearchStep, there is an extra Gather node to select beam index so it is not graph input.
present = self.match_present(concat_v, input_name_to_nodes)
if present is None:
logger.debug("fuse_attention: match present failed")
return
if not self.model.find_graph_output(present):
logger.info("fuse_attention: expect present to be graph output")
return
self.fuse_attention_node(
matmul_before_split,
add_before_split,
past,
present,
layernorm_before_attention.output[0],
reshape_qkv,
attention_mask,
)