|
|
from sympy.core.backend import symbols from sympy.physics.mechanics import dynamicsymbols from sympy.physics.mechanics import ReferenceFrame, Point, Particle from sympy.physics.mechanics import LagrangesMethod, Lagrangian
### This test asserts that a system with more than one external forces ### is acurately formed with Lagrange method (see issue #8626)
def test_lagrange_2forces(): ### Equations for two damped springs in serie with two forces
### generalized coordinates q1, q2 = dynamicsymbols('q1, q2') ### generalized speeds q1d, q2d = dynamicsymbols('q1, q2', 1)
### Mass, spring strength, friction coefficient m, k, nu = symbols('m, k, nu')
N = ReferenceFrame('N') O = Point('O')
### Two points P1 = O.locatenew('P1', q1 * N.x) P1.set_vel(N, q1d * N.x) P2 = O.locatenew('P1', q2 * N.x) P2.set_vel(N, q2d * N.x)
pP1 = Particle('pP1', P1, m) pP1.potential_energy = k * q1**2 / 2
pP2 = Particle('pP2', P2, m) pP2.potential_energy = k * (q1 - q2)**2 / 2
#### Friction forces forcelist = [(P1, - nu * q1d * N.x), (P2, - nu * q2d * N.x)] lag = Lagrangian(N, pP1, pP2)
l_method = LagrangesMethod(lag, (q1, q2), forcelist=forcelist, frame=N) l_method.form_lagranges_equations()
eq1 = l_method.eom[0] assert eq1.diff(q1d) == nu eq2 = l_method.eom[1] assert eq2.diff(q2d) == nu
|