|
|
from sympy.core.numbers import Integer from sympy.core.symbol import symbols
from sympy.physics.quantum.dagger import Dagger from sympy.physics.quantum.anticommutator import AntiCommutator as AComm from sympy.physics.quantum.operator import Operator
a, b, c = symbols('a,b,c') A, B, C, D = symbols('A,B,C,D', commutative=False)
def test_anticommutator(): ac = AComm(A, B) assert isinstance(ac, AComm) assert ac.is_commutative is False assert ac.subs(A, C) == AComm(C, B)
def test_commutator_identities(): assert AComm(a*A, b*B) == a*b*AComm(A, B) assert AComm(A, A) == 2*A**2 assert AComm(A, B) == AComm(B, A) assert AComm(a, b) == 2*a*b assert AComm(A, B).doit() == A*B + B*A
def test_anticommutator_dagger(): assert Dagger(AComm(A, B)) == AComm(Dagger(A), Dagger(B))
class Foo(Operator):
def _eval_anticommutator_Bar(self, bar): return Integer(0)
class Bar(Operator): pass
class Tam(Operator):
def _eval_anticommutator_Foo(self, foo): return Integer(1)
def test_eval_commutator(): F = Foo('F') B = Bar('B') T = Tam('T') assert AComm(F, B).doit() == 0 assert AComm(B, F).doit() == 0 assert AComm(F, T).doit() == 1 assert AComm(T, F).doit() == 1 assert AComm(B, T).doit() == B*T + T*B
|