|
|
"""Tests on algebraic numbers. """
from sympy.core.containers import Tuple from sympy.core.numbers import (AlgebraicNumber, I, Rational) from sympy.core.singleton import S from sympy.core.symbol import Symbol from sympy.functions.elementary.miscellaneous import sqrt from sympy.polys.polytools import Poly from sympy.polys.numberfields.subfield import to_number_field from sympy.polys.polyclasses import DMP from sympy.polys.domains import QQ from sympy.polys.rootoftools import CRootOf from sympy.abc import x, y
def test_AlgebraicNumber(): minpoly, root = x**2 - 2, sqrt(2)
a = AlgebraicNumber(root, gen=x)
assert a.rep == DMP([QQ(1), QQ(0)], QQ) assert a.root == root assert a.alias is None assert a.minpoly == minpoly assert a.is_number
assert a.is_aliased is False
assert a.coeffs() == [S.One, S.Zero] assert a.native_coeffs() == [QQ(1), QQ(0)]
a = AlgebraicNumber(root, gen=x, alias='y')
assert a.rep == DMP([QQ(1), QQ(0)], QQ) assert a.root == root assert a.alias == Symbol('y') assert a.minpoly == minpoly assert a.is_number
assert a.is_aliased is True
a = AlgebraicNumber(root, gen=x, alias=Symbol('y'))
assert a.rep == DMP([QQ(1), QQ(0)], QQ) assert a.root == root assert a.alias == Symbol('y') assert a.minpoly == minpoly assert a.is_number
assert a.is_aliased is True
assert AlgebraicNumber(sqrt(2), []).rep == DMP([], QQ) assert AlgebraicNumber(sqrt(2), ()).rep == DMP([], QQ) assert AlgebraicNumber(sqrt(2), (0, 0)).rep == DMP([], QQ)
assert AlgebraicNumber(sqrt(2), [8]).rep == DMP([QQ(8)], QQ) assert AlgebraicNumber(sqrt(2), [Rational(8, 3)]).rep == DMP([QQ(8, 3)], QQ)
assert AlgebraicNumber(sqrt(2), [7, 3]).rep == DMP([QQ(7), QQ(3)], QQ) assert AlgebraicNumber( sqrt(2), [Rational(7, 9), Rational(3, 2)]).rep == DMP([QQ(7, 9), QQ(3, 2)], QQ)
assert AlgebraicNumber(sqrt(2), [1, 2, 3]).rep == DMP([QQ(2), QQ(5)], QQ)
a = AlgebraicNumber(AlgebraicNumber(root, gen=x), [1, 2])
assert a.rep == DMP([QQ(1), QQ(2)], QQ) assert a.root == root assert a.alias is None assert a.minpoly == minpoly assert a.is_number
assert a.is_aliased is False
assert a.coeffs() == [S.One, S(2)] assert a.native_coeffs() == [QQ(1), QQ(2)]
a = AlgebraicNumber((minpoly, root), [1, 2])
assert a.rep == DMP([QQ(1), QQ(2)], QQ) assert a.root == root assert a.alias is None assert a.minpoly == minpoly assert a.is_number
assert a.is_aliased is False
a = AlgebraicNumber((Poly(minpoly), root), [1, 2])
assert a.rep == DMP([QQ(1), QQ(2)], QQ) assert a.root == root assert a.alias is None assert a.minpoly == minpoly assert a.is_number
assert a.is_aliased is False
assert AlgebraicNumber( sqrt(3)).rep == DMP([ QQ(1), QQ(0)], QQ) assert AlgebraicNumber(-sqrt(3)).rep == DMP([ QQ(1), QQ(0)], QQ)
a = AlgebraicNumber(sqrt(2)) b = AlgebraicNumber(sqrt(2))
assert a == b
c = AlgebraicNumber(sqrt(2), gen=x)
assert a == b assert a == c
a = AlgebraicNumber(sqrt(2), [1, 2]) b = AlgebraicNumber(sqrt(2), [1, 3])
assert a != b and a != sqrt(2) + 3
assert (a == x) is False and (a != x) is True
a = AlgebraicNumber(sqrt(2), [1, 0]) b = AlgebraicNumber(sqrt(2), [1, 0], alias=y)
assert a.as_poly(x) == Poly(x, domain='QQ') assert b.as_poly() == Poly(y, domain='QQ')
assert a.as_expr() == sqrt(2) assert a.as_expr(x) == x assert b.as_expr() == sqrt(2) assert b.as_expr(x) == x
a = AlgebraicNumber(sqrt(2), [2, 3]) b = AlgebraicNumber(sqrt(2), [2, 3], alias=y)
p = a.as_poly()
assert p == Poly(2*p.gen + 3)
assert a.as_poly(x) == Poly(2*x + 3, domain='QQ') assert b.as_poly() == Poly(2*y + 3, domain='QQ')
assert a.as_expr() == 2*sqrt(2) + 3 assert a.as_expr(x) == 2*x + 3 assert b.as_expr() == 2*sqrt(2) + 3 assert b.as_expr(x) == 2*x + 3
a = AlgebraicNumber(sqrt(2)) b = to_number_field(sqrt(2)) assert a.args == b.args == (sqrt(2), Tuple(1, 0)) b = AlgebraicNumber(sqrt(2), alias='alpha') assert b.args == (sqrt(2), Tuple(1, 0), Symbol('alpha'))
a = AlgebraicNumber(sqrt(2), [1, 2, 3]) assert a.args == (sqrt(2), Tuple(1, 2, 3))
a = AlgebraicNumber(sqrt(2), [1, 2], "alpha") b = AlgebraicNumber(a) c = AlgebraicNumber(a, alias="gamma") assert a == b assert c.alias.name == "gamma"
a = AlgebraicNumber(sqrt(2) + sqrt(3), [S(1)/2, 0, S(-9)/2, 0]) b = AlgebraicNumber(a, [1, 0, 0]) assert b.root == a.root assert a.to_root() == sqrt(2) assert b.to_root() == 2
a = AlgebraicNumber(2) assert a.is_primitive_element is True
def test_to_algebraic_integer(): a = AlgebraicNumber(sqrt(3), gen=x).to_algebraic_integer()
assert a.minpoly == x**2 - 3 assert a.root == sqrt(3) assert a.rep == DMP([QQ(1), QQ(0)], QQ)
a = AlgebraicNumber(2*sqrt(3), gen=x).to_algebraic_integer() assert a.minpoly == x**2 - 12 assert a.root == 2*sqrt(3) assert a.rep == DMP([QQ(1), QQ(0)], QQ)
a = AlgebraicNumber(sqrt(3)/2, gen=x).to_algebraic_integer()
assert a.minpoly == x**2 - 12 assert a.root == 2*sqrt(3) assert a.rep == DMP([QQ(1), QQ(0)], QQ)
a = AlgebraicNumber(sqrt(3)/2, [Rational(7, 19), 3], gen=x).to_algebraic_integer()
assert a.minpoly == x**2 - 12 assert a.root == 2*sqrt(3) assert a.rep == DMP([QQ(7, 19), QQ(3)], QQ)
def test_AlgebraicNumber_to_root(): assert AlgebraicNumber(sqrt(2)).to_root() == sqrt(2)
zeta5_squared = AlgebraicNumber(CRootOf(x**5 - 1, 4), coeffs=[1, 0, 0]) assert zeta5_squared.to_root() == CRootOf(x**4 + x**3 + x**2 + x + 1, 1)
zeta3_squared = AlgebraicNumber(CRootOf(x**3 - 1, 2), coeffs=[1, 0, 0]) assert zeta3_squared.to_root() == -S(1)/2 - sqrt(3)*I/2 assert zeta3_squared.to_root(radicals=False) == CRootOf(x**2 + x + 1, 0)
|