|
|
#!/usr/bin/python # -*- coding: utf-8 -*-
from mpmath import mp from mpmath import libmp
xrange = libmp.backend.xrange
def run_hessenberg(A, verbose = 0): if verbose > 1: print("original matrix (hessenberg):\n", A)
n = A.rows
Q, H = mp.hessenberg(A)
if verbose > 1: print("Q:\n",Q) print("H:\n",H)
B = Q * H * Q.transpose_conj()
eps = mp.exp(0.8 * mp.log(mp.eps))
err0 = 0 for x in xrange(n): for y in xrange(n): err0 += abs(A[y,x] - B[y,x]) err0 /= n * n
err1 = 0 for x in xrange(n): for y in xrange(x + 2, n): err1 += abs(H[y,x])
if verbose > 0: print("difference (H):", err0, err1)
if verbose > 1: print("B:\n", B)
assert err0 < eps assert err1 == 0
def run_schur(A, verbose = 0): if verbose > 1: print("original matrix (schur):\n", A)
n = A.rows
Q, R = mp.schur(A)
if verbose > 1: print("Q:\n", Q) print("R:\n", R)
B = Q * R * Q.transpose_conj() C = Q * Q.transpose_conj()
eps = mp.exp(0.8 * mp.log(mp.eps))
err0 = 0 for x in xrange(n): for y in xrange(n): err0 += abs(A[y,x] - B[y,x]) err0 /= n * n
err1 = 0 for x in xrange(n): for y in xrange(n): if x == y: C[y,x] -= 1 err1 += abs(C[y,x]) err1 /= n * n
err2 = 0 for x in xrange(n): for y in xrange(x + 1, n): err2 += abs(R[y,x])
if verbose > 0: print("difference (S):", err0, err1, err2)
if verbose > 1: print("B:\n", B)
assert err0 < eps assert err1 < eps assert err2 == 0
def run_eig(A, verbose = 0): if verbose > 1: print("original matrix (eig):\n", A)
n = A.rows
E, EL, ER = mp.eig(A, left = True, right = True)
if verbose > 1: print("E:\n", E) print("EL:\n", EL) print("ER:\n", ER)
eps = mp.exp(0.8 * mp.log(mp.eps))
err0 = 0 for i in xrange(n): B = A * ER[:,i] - E[i] * ER[:,i] err0 = max(err0, mp.mnorm(B))
B = EL[i,:] * A - EL[i,:] * E[i] err0 = max(err0, mp.mnorm(B))
err0 /= n * n
if verbose > 0: print("difference (E):", err0)
assert err0 < eps
#####################
def test_eig_dyn(): v = 0 for i in xrange(5): n = 1 + int(mp.rand() * 5) if mp.rand() > 0.5: # real A = 2 * mp.randmatrix(n, n) - 1 if mp.rand() > 0.5: A *= 10 for x in xrange(n): for y in xrange(n): A[x,y] = int(A[x,y]) else: A = (2 * mp.randmatrix(n, n) - 1) + 1j * (2 * mp.randmatrix(n, n) - 1) if mp.rand() > 0.5: A *= 10 for x in xrange(n): for y in xrange(n): A[x,y] = int(mp.re(A[x,y])) + 1j * int(mp.im(A[x,y]))
run_hessenberg(A, verbose = v) run_schur(A, verbose = v) run_eig(A, verbose = v)
def test_eig(): v = 0 AS = []
A = mp.matrix([[2, 1, 0], # jordan block of size 3 [0, 2, 1], [0, 0, 2]]) AS.append(A) AS.append(A.transpose())
A = mp.matrix([[2, 0, 0], # jordan block of size 2 [0, 2, 1], [0, 0, 2]]) AS.append(A) AS.append(A.transpose())
A = mp.matrix([[2, 0, 1], # jordan block of size 2 [0, 2, 0], [0, 0, 2]]) AS.append(A) AS.append(A.transpose())
A= mp.matrix([[0, 0, 1], # cyclic [1, 0, 0], [0, 1, 0]]) AS.append(A) AS.append(A.transpose())
for A in AS: run_hessenberg(A, verbose = v) run_schur(A, verbose = v) run_eig(A, verbose = v)
|