|
|
import sys from typing import ( List, Any, TypeVar, Generator, List, Union, Tuple, overload, )
from numpy import ndarray, dtype, generic from numpy.typing import DTypeLike
# TODO: Set a shape bound once we've got proper shape support _Shape = TypeVar("_Shape", bound=Any) _DType = TypeVar("_DType", bound=dtype[Any]) _ScalarType = TypeVar("_ScalarType", bound=generic)
_Index = Union[ Union[ellipsis, int, slice], Tuple[Union[ellipsis, int, slice], ...], ]
__all__: List[str]
# NOTE: In reality `Arrayterator` does not actually inherit from `ndarray`, # but its ``__getattr__` method does wrap around the former and thus has # access to all its methods
class Arrayterator(ndarray[_Shape, _DType]): var: ndarray[_Shape, _DType] # type: ignore[assignment] buf_size: None | int start: List[int] stop: List[int] step: List[int]
@property # type: ignore[misc] def shape(self) -> Tuple[int, ...]: ... @property def flat( # type: ignore[override] self: ndarray[Any, dtype[_ScalarType]] ) -> Generator[_ScalarType, None, None]: ... def __init__( self, var: ndarray[_Shape, _DType], buf_size: None | int = ... ) -> None: ... @overload def __array__(self, dtype: None = ...) -> ndarray[Any, _DType]: ... @overload def __array__(self, dtype: DTypeLike) -> ndarray[Any, dtype[Any]]: ... def __getitem__(self, index: _Index) -> Arrayterator[Any, _DType]: ... def __iter__(self) -> Generator[ndarray[Any, _DType], None, None]: ...
|