m2m模型翻译
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

345 lines
12 KiB

6 months ago
  1. # pylint: disable-msg=W0611, W0612, W0511,R0201
  2. """Tests suite for MaskedArray & subclassing.
  3. :author: Pierre Gerard-Marchant
  4. :contact: pierregm_at_uga_dot_edu
  5. :version: $Id: test_subclassing.py 3473 2007-10-29 15:18:13Z jarrod.millman $
  6. """
  7. import numpy as np
  8. from numpy.testing import assert_, assert_raises
  9. from numpy.ma.testutils import assert_equal
  10. from numpy.ma.core import (
  11. array, arange, masked, MaskedArray, masked_array, log, add, hypot,
  12. divide, asarray, asanyarray, nomask
  13. )
  14. # from numpy.ma.core import (
  15. def assert_startswith(a, b):
  16. # produces a better error message than assert_(a.startswith(b))
  17. assert_equal(a[:len(b)], b)
  18. class SubArray(np.ndarray):
  19. # Defines a generic np.ndarray subclass, that stores some metadata
  20. # in the dictionary `info`.
  21. def __new__(cls,arr,info={}):
  22. x = np.asanyarray(arr).view(cls)
  23. x.info = info.copy()
  24. return x
  25. def __array_finalize__(self, obj):
  26. if callable(getattr(super(), '__array_finalize__', None)):
  27. super().__array_finalize__(obj)
  28. self.info = getattr(obj, 'info', {}).copy()
  29. return
  30. def __add__(self, other):
  31. result = super().__add__(other)
  32. result.info['added'] = result.info.get('added', 0) + 1
  33. return result
  34. def __iadd__(self, other):
  35. result = super().__iadd__(other)
  36. result.info['iadded'] = result.info.get('iadded', 0) + 1
  37. return result
  38. subarray = SubArray
  39. class SubMaskedArray(MaskedArray):
  40. """Pure subclass of MaskedArray, keeping some info on subclass."""
  41. def __new__(cls, info=None, **kwargs):
  42. obj = super().__new__(cls, **kwargs)
  43. obj._optinfo['info'] = info
  44. return obj
  45. class MSubArray(SubArray, MaskedArray):
  46. def __new__(cls, data, info={}, mask=nomask):
  47. subarr = SubArray(data, info)
  48. _data = MaskedArray.__new__(cls, data=subarr, mask=mask)
  49. _data.info = subarr.info
  50. return _data
  51. @property
  52. def _series(self):
  53. _view = self.view(MaskedArray)
  54. _view._sharedmask = False
  55. return _view
  56. msubarray = MSubArray
  57. # Also a subclass that overrides __str__, __repr__ and __setitem__, disallowing
  58. # setting to non-class values (and thus np.ma.core.masked_print_option)
  59. # and overrides __array_wrap__, updating the info dict, to check that this
  60. # doesn't get destroyed by MaskedArray._update_from. But this one also needs
  61. # its own iterator...
  62. class CSAIterator:
  63. """
  64. Flat iterator object that uses its own setter/getter
  65. (works around ndarray.flat not propagating subclass setters/getters
  66. see https://github.com/numpy/numpy/issues/4564)
  67. roughly following MaskedIterator
  68. """
  69. def __init__(self, a):
  70. self._original = a
  71. self._dataiter = a.view(np.ndarray).flat
  72. def __iter__(self):
  73. return self
  74. def __getitem__(self, indx):
  75. out = self._dataiter.__getitem__(indx)
  76. if not isinstance(out, np.ndarray):
  77. out = out.__array__()
  78. out = out.view(type(self._original))
  79. return out
  80. def __setitem__(self, index, value):
  81. self._dataiter[index] = self._original._validate_input(value)
  82. def __next__(self):
  83. return next(self._dataiter).__array__().view(type(self._original))
  84. class ComplicatedSubArray(SubArray):
  85. def __str__(self):
  86. return f'myprefix {self.view(SubArray)} mypostfix'
  87. def __repr__(self):
  88. # Return a repr that does not start with 'name('
  89. return f'<{self.__class__.__name__} {self}>'
  90. def _validate_input(self, value):
  91. if not isinstance(value, ComplicatedSubArray):
  92. raise ValueError("Can only set to MySubArray values")
  93. return value
  94. def __setitem__(self, item, value):
  95. # validation ensures direct assignment with ndarray or
  96. # masked_print_option will fail
  97. super().__setitem__(item, self._validate_input(value))
  98. def __getitem__(self, item):
  99. # ensure getter returns our own class also for scalars
  100. value = super().__getitem__(item)
  101. if not isinstance(value, np.ndarray): # scalar
  102. value = value.__array__().view(ComplicatedSubArray)
  103. return value
  104. @property
  105. def flat(self):
  106. return CSAIterator(self)
  107. @flat.setter
  108. def flat(self, value):
  109. y = self.ravel()
  110. y[:] = value
  111. def __array_wrap__(self, obj, context=None):
  112. obj = super().__array_wrap__(obj, context)
  113. if context is not None and context[0] is np.multiply:
  114. obj.info['multiplied'] = obj.info.get('multiplied', 0) + 1
  115. return obj
  116. class TestSubclassing:
  117. # Test suite for masked subclasses of ndarray.
  118. def setup(self):
  119. x = np.arange(5, dtype='float')
  120. mx = msubarray(x, mask=[0, 1, 0, 0, 0])
  121. self.data = (x, mx)
  122. def test_data_subclassing(self):
  123. # Tests whether the subclass is kept.
  124. x = np.arange(5)
  125. m = [0, 0, 1, 0, 0]
  126. xsub = SubArray(x)
  127. xmsub = masked_array(xsub, mask=m)
  128. assert_(isinstance(xmsub, MaskedArray))
  129. assert_equal(xmsub._data, xsub)
  130. assert_(isinstance(xmsub._data, SubArray))
  131. def test_maskedarray_subclassing(self):
  132. # Tests subclassing MaskedArray
  133. (x, mx) = self.data
  134. assert_(isinstance(mx._data, subarray))
  135. def test_masked_unary_operations(self):
  136. # Tests masked_unary_operation
  137. (x, mx) = self.data
  138. with np.errstate(divide='ignore'):
  139. assert_(isinstance(log(mx), msubarray))
  140. assert_equal(log(x), np.log(x))
  141. def test_masked_binary_operations(self):
  142. # Tests masked_binary_operation
  143. (x, mx) = self.data
  144. # Result should be a msubarray
  145. assert_(isinstance(add(mx, mx), msubarray))
  146. assert_(isinstance(add(mx, x), msubarray))
  147. # Result should work
  148. assert_equal(add(mx, x), mx+x)
  149. assert_(isinstance(add(mx, mx)._data, subarray))
  150. assert_(isinstance(add.outer(mx, mx), msubarray))
  151. assert_(isinstance(hypot(mx, mx), msubarray))
  152. assert_(isinstance(hypot(mx, x), msubarray))
  153. def test_masked_binary_operations2(self):
  154. # Tests domained_masked_binary_operation
  155. (x, mx) = self.data
  156. xmx = masked_array(mx.data.__array__(), mask=mx.mask)
  157. assert_(isinstance(divide(mx, mx), msubarray))
  158. assert_(isinstance(divide(mx, x), msubarray))
  159. assert_equal(divide(mx, mx), divide(xmx, xmx))
  160. def test_attributepropagation(self):
  161. x = array(arange(5), mask=[0]+[1]*4)
  162. my = masked_array(subarray(x))
  163. ym = msubarray(x)
  164. #
  165. z = (my+1)
  166. assert_(isinstance(z, MaskedArray))
  167. assert_(not isinstance(z, MSubArray))
  168. assert_(isinstance(z._data, SubArray))
  169. assert_equal(z._data.info, {})
  170. #
  171. z = (ym+1)
  172. assert_(isinstance(z, MaskedArray))
  173. assert_(isinstance(z, MSubArray))
  174. assert_(isinstance(z._data, SubArray))
  175. assert_(z._data.info['added'] > 0)
  176. # Test that inplace methods from data get used (gh-4617)
  177. ym += 1
  178. assert_(isinstance(ym, MaskedArray))
  179. assert_(isinstance(ym, MSubArray))
  180. assert_(isinstance(ym._data, SubArray))
  181. assert_(ym._data.info['iadded'] > 0)
  182. #
  183. ym._set_mask([1, 0, 0, 0, 1])
  184. assert_equal(ym._mask, [1, 0, 0, 0, 1])
  185. ym._series._set_mask([0, 0, 0, 0, 1])
  186. assert_equal(ym._mask, [0, 0, 0, 0, 1])
  187. #
  188. xsub = subarray(x, info={'name':'x'})
  189. mxsub = masked_array(xsub)
  190. assert_(hasattr(mxsub, 'info'))
  191. assert_equal(mxsub.info, xsub.info)
  192. def test_subclasspreservation(self):
  193. # Checks that masked_array(...,subok=True) preserves the class.
  194. x = np.arange(5)
  195. m = [0, 0, 1, 0, 0]
  196. xinfo = [(i, j) for (i, j) in zip(x, m)]
  197. xsub = MSubArray(x, mask=m, info={'xsub':xinfo})
  198. #
  199. mxsub = masked_array(xsub, subok=False)
  200. assert_(not isinstance(mxsub, MSubArray))
  201. assert_(isinstance(mxsub, MaskedArray))
  202. assert_equal(mxsub._mask, m)
  203. #
  204. mxsub = asarray(xsub)
  205. assert_(not isinstance(mxsub, MSubArray))
  206. assert_(isinstance(mxsub, MaskedArray))
  207. assert_equal(mxsub._mask, m)
  208. #
  209. mxsub = masked_array(xsub, subok=True)
  210. assert_(isinstance(mxsub, MSubArray))
  211. assert_equal(mxsub.info, xsub.info)
  212. assert_equal(mxsub._mask, xsub._mask)
  213. #
  214. mxsub = asanyarray(xsub)
  215. assert_(isinstance(mxsub, MSubArray))
  216. assert_equal(mxsub.info, xsub.info)
  217. assert_equal(mxsub._mask, m)
  218. def test_subclass_items(self):
  219. """test that getter and setter go via baseclass"""
  220. x = np.arange(5)
  221. xcsub = ComplicatedSubArray(x)
  222. mxcsub = masked_array(xcsub, mask=[True, False, True, False, False])
  223. # getter should return a ComplicatedSubArray, even for single item
  224. # first check we wrote ComplicatedSubArray correctly
  225. assert_(isinstance(xcsub[1], ComplicatedSubArray))
  226. assert_(isinstance(xcsub[1,...], ComplicatedSubArray))
  227. assert_(isinstance(xcsub[1:4], ComplicatedSubArray))
  228. # now that it propagates inside the MaskedArray
  229. assert_(isinstance(mxcsub[1], ComplicatedSubArray))
  230. assert_(isinstance(mxcsub[1,...].data, ComplicatedSubArray))
  231. assert_(mxcsub[0] is masked)
  232. assert_(isinstance(mxcsub[0,...].data, ComplicatedSubArray))
  233. assert_(isinstance(mxcsub[1:4].data, ComplicatedSubArray))
  234. # also for flattened version (which goes via MaskedIterator)
  235. assert_(isinstance(mxcsub.flat[1].data, ComplicatedSubArray))
  236. assert_(mxcsub.flat[0] is masked)
  237. assert_(isinstance(mxcsub.flat[1:4].base, ComplicatedSubArray))
  238. # setter should only work with ComplicatedSubArray input
  239. # first check we wrote ComplicatedSubArray correctly
  240. assert_raises(ValueError, xcsub.__setitem__, 1, x[4])
  241. # now that it propagates inside the MaskedArray
  242. assert_raises(ValueError, mxcsub.__setitem__, 1, x[4])
  243. assert_raises(ValueError, mxcsub.__setitem__, slice(1, 4), x[1:4])
  244. mxcsub[1] = xcsub[4]
  245. mxcsub[1:4] = xcsub[1:4]
  246. # also for flattened version (which goes via MaskedIterator)
  247. assert_raises(ValueError, mxcsub.flat.__setitem__, 1, x[4])
  248. assert_raises(ValueError, mxcsub.flat.__setitem__, slice(1, 4), x[1:4])
  249. mxcsub.flat[1] = xcsub[4]
  250. mxcsub.flat[1:4] = xcsub[1:4]
  251. def test_subclass_nomask_items(self):
  252. x = np.arange(5)
  253. xcsub = ComplicatedSubArray(x)
  254. mxcsub_nomask = masked_array(xcsub)
  255. assert_(isinstance(mxcsub_nomask[1,...].data, ComplicatedSubArray))
  256. assert_(isinstance(mxcsub_nomask[0,...].data, ComplicatedSubArray))
  257. assert_(isinstance(mxcsub_nomask[1], ComplicatedSubArray))
  258. assert_(isinstance(mxcsub_nomask[0], ComplicatedSubArray))
  259. def test_subclass_repr(self):
  260. """test that repr uses the name of the subclass
  261. and 'array' for np.ndarray"""
  262. x = np.arange(5)
  263. mx = masked_array(x, mask=[True, False, True, False, False])
  264. assert_startswith(repr(mx), 'masked_array')
  265. xsub = SubArray(x)
  266. mxsub = masked_array(xsub, mask=[True, False, True, False, False])
  267. assert_startswith(repr(mxsub),
  268. f'masked_{SubArray.__name__}(data=[--, 1, --, 3, 4]')
  269. def test_subclass_str(self):
  270. """test str with subclass that has overridden str, setitem"""
  271. # first without override
  272. x = np.arange(5)
  273. xsub = SubArray(x)
  274. mxsub = masked_array(xsub, mask=[True, False, True, False, False])
  275. assert_equal(str(mxsub), '[-- 1 -- 3 4]')
  276. xcsub = ComplicatedSubArray(x)
  277. assert_raises(ValueError, xcsub.__setitem__, 0,
  278. np.ma.core.masked_print_option)
  279. mxcsub = masked_array(xcsub, mask=[True, False, True, False, False])
  280. assert_equal(str(mxcsub), 'myprefix [-- 1 -- 3 4] mypostfix')
  281. def test_pure_subclass_info_preservation(self):
  282. # Test that ufuncs and methods conserve extra information consistently;
  283. # see gh-7122.
  284. arr1 = SubMaskedArray('test', data=[1,2,3,4,5,6])
  285. arr2 = SubMaskedArray(data=[0,1,2,3,4,5])
  286. diff1 = np.subtract(arr1, arr2)
  287. assert_('info' in diff1._optinfo)
  288. assert_(diff1._optinfo['info'] == 'test')
  289. diff2 = arr1 - arr2
  290. assert_('info' in diff2._optinfo)
  291. assert_(diff2._optinfo['info'] == 'test')