m2m模型翻译
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

600 lines
20 KiB

6 months ago
  1. """Tests for polynomial module.
  2. """
  3. from functools import reduce
  4. import numpy as np
  5. import numpy.polynomial.polynomial as poly
  6. from numpy.testing import (
  7. assert_almost_equal, assert_raises, assert_equal, assert_,
  8. assert_warns, assert_array_equal, assert_raises_regex)
  9. def trim(x):
  10. return poly.polytrim(x, tol=1e-6)
  11. T0 = [1]
  12. T1 = [0, 1]
  13. T2 = [-1, 0, 2]
  14. T3 = [0, -3, 0, 4]
  15. T4 = [1, 0, -8, 0, 8]
  16. T5 = [0, 5, 0, -20, 0, 16]
  17. T6 = [-1, 0, 18, 0, -48, 0, 32]
  18. T7 = [0, -7, 0, 56, 0, -112, 0, 64]
  19. T8 = [1, 0, -32, 0, 160, 0, -256, 0, 128]
  20. T9 = [0, 9, 0, -120, 0, 432, 0, -576, 0, 256]
  21. Tlist = [T0, T1, T2, T3, T4, T5, T6, T7, T8, T9]
  22. class TestConstants:
  23. def test_polydomain(self):
  24. assert_equal(poly.polydomain, [-1, 1])
  25. def test_polyzero(self):
  26. assert_equal(poly.polyzero, [0])
  27. def test_polyone(self):
  28. assert_equal(poly.polyone, [1])
  29. def test_polyx(self):
  30. assert_equal(poly.polyx, [0, 1])
  31. class TestArithmetic:
  32. def test_polyadd(self):
  33. for i in range(5):
  34. for j in range(5):
  35. msg = f"At i={i}, j={j}"
  36. tgt = np.zeros(max(i, j) + 1)
  37. tgt[i] += 1
  38. tgt[j] += 1
  39. res = poly.polyadd([0]*i + [1], [0]*j + [1])
  40. assert_equal(trim(res), trim(tgt), err_msg=msg)
  41. def test_polysub(self):
  42. for i in range(5):
  43. for j in range(5):
  44. msg = f"At i={i}, j={j}"
  45. tgt = np.zeros(max(i, j) + 1)
  46. tgt[i] += 1
  47. tgt[j] -= 1
  48. res = poly.polysub([0]*i + [1], [0]*j + [1])
  49. assert_equal(trim(res), trim(tgt), err_msg=msg)
  50. def test_polymulx(self):
  51. assert_equal(poly.polymulx([0]), [0])
  52. assert_equal(poly.polymulx([1]), [0, 1])
  53. for i in range(1, 5):
  54. ser = [0]*i + [1]
  55. tgt = [0]*(i + 1) + [1]
  56. assert_equal(poly.polymulx(ser), tgt)
  57. def test_polymul(self):
  58. for i in range(5):
  59. for j in range(5):
  60. msg = f"At i={i}, j={j}"
  61. tgt = np.zeros(i + j + 1)
  62. tgt[i + j] += 1
  63. res = poly.polymul([0]*i + [1], [0]*j + [1])
  64. assert_equal(trim(res), trim(tgt), err_msg=msg)
  65. def test_polydiv(self):
  66. # check zero division
  67. assert_raises(ZeroDivisionError, poly.polydiv, [1], [0])
  68. # check scalar division
  69. quo, rem = poly.polydiv([2], [2])
  70. assert_equal((quo, rem), (1, 0))
  71. quo, rem = poly.polydiv([2, 2], [2])
  72. assert_equal((quo, rem), ((1, 1), 0))
  73. # check rest.
  74. for i in range(5):
  75. for j in range(5):
  76. msg = f"At i={i}, j={j}"
  77. ci = [0]*i + [1, 2]
  78. cj = [0]*j + [1, 2]
  79. tgt = poly.polyadd(ci, cj)
  80. quo, rem = poly.polydiv(tgt, ci)
  81. res = poly.polyadd(poly.polymul(quo, ci), rem)
  82. assert_equal(res, tgt, err_msg=msg)
  83. def test_polypow(self):
  84. for i in range(5):
  85. for j in range(5):
  86. msg = f"At i={i}, j={j}"
  87. c = np.arange(i + 1)
  88. tgt = reduce(poly.polymul, [c]*j, np.array([1]))
  89. res = poly.polypow(c, j)
  90. assert_equal(trim(res), trim(tgt), err_msg=msg)
  91. class TestEvaluation:
  92. # coefficients of 1 + 2*x + 3*x**2
  93. c1d = np.array([1., 2., 3.])
  94. c2d = np.einsum('i,j->ij', c1d, c1d)
  95. c3d = np.einsum('i,j,k->ijk', c1d, c1d, c1d)
  96. # some random values in [-1, 1)
  97. x = np.random.random((3, 5))*2 - 1
  98. y = poly.polyval(x, [1., 2., 3.])
  99. def test_polyval(self):
  100. #check empty input
  101. assert_equal(poly.polyval([], [1]).size, 0)
  102. #check normal input)
  103. x = np.linspace(-1, 1)
  104. y = [x**i for i in range(5)]
  105. for i in range(5):
  106. tgt = y[i]
  107. res = poly.polyval(x, [0]*i + [1])
  108. assert_almost_equal(res, tgt)
  109. tgt = x*(x**2 - 1)
  110. res = poly.polyval(x, [0, -1, 0, 1])
  111. assert_almost_equal(res, tgt)
  112. #check that shape is preserved
  113. for i in range(3):
  114. dims = [2]*i
  115. x = np.zeros(dims)
  116. assert_equal(poly.polyval(x, [1]).shape, dims)
  117. assert_equal(poly.polyval(x, [1, 0]).shape, dims)
  118. assert_equal(poly.polyval(x, [1, 0, 0]).shape, dims)
  119. #check masked arrays are processed correctly
  120. mask = [False, True, False]
  121. mx = np.ma.array([1, 2, 3], mask=mask)
  122. res = np.polyval([7, 5, 3], mx)
  123. assert_array_equal(res.mask, mask)
  124. #check subtypes of ndarray are preserved
  125. class C(np.ndarray):
  126. pass
  127. cx = np.array([1, 2, 3]).view(C)
  128. assert_equal(type(np.polyval([2, 3, 4], cx)), C)
  129. def test_polyvalfromroots(self):
  130. # check exception for broadcasting x values over root array with
  131. # too few dimensions
  132. assert_raises(ValueError, poly.polyvalfromroots,
  133. [1], [1], tensor=False)
  134. # check empty input
  135. assert_equal(poly.polyvalfromroots([], [1]).size, 0)
  136. assert_(poly.polyvalfromroots([], [1]).shape == (0,))
  137. # check empty input + multidimensional roots
  138. assert_equal(poly.polyvalfromroots([], [[1] * 5]).size, 0)
  139. assert_(poly.polyvalfromroots([], [[1] * 5]).shape == (5, 0))
  140. # check scalar input
  141. assert_equal(poly.polyvalfromroots(1, 1), 0)
  142. assert_(poly.polyvalfromroots(1, np.ones((3, 3))).shape == (3,))
  143. # check normal input)
  144. x = np.linspace(-1, 1)
  145. y = [x**i for i in range(5)]
  146. for i in range(1, 5):
  147. tgt = y[i]
  148. res = poly.polyvalfromroots(x, [0]*i)
  149. assert_almost_equal(res, tgt)
  150. tgt = x*(x - 1)*(x + 1)
  151. res = poly.polyvalfromroots(x, [-1, 0, 1])
  152. assert_almost_equal(res, tgt)
  153. # check that shape is preserved
  154. for i in range(3):
  155. dims = [2]*i
  156. x = np.zeros(dims)
  157. assert_equal(poly.polyvalfromroots(x, [1]).shape, dims)
  158. assert_equal(poly.polyvalfromroots(x, [1, 0]).shape, dims)
  159. assert_equal(poly.polyvalfromroots(x, [1, 0, 0]).shape, dims)
  160. # check compatibility with factorization
  161. ptest = [15, 2, -16, -2, 1]
  162. r = poly.polyroots(ptest)
  163. x = np.linspace(-1, 1)
  164. assert_almost_equal(poly.polyval(x, ptest),
  165. poly.polyvalfromroots(x, r))
  166. # check multidimensional arrays of roots and values
  167. # check tensor=False
  168. rshape = (3, 5)
  169. x = np.arange(-3, 2)
  170. r = np.random.randint(-5, 5, size=rshape)
  171. res = poly.polyvalfromroots(x, r, tensor=False)
  172. tgt = np.empty(r.shape[1:])
  173. for ii in range(tgt.size):
  174. tgt[ii] = poly.polyvalfromroots(x[ii], r[:, ii])
  175. assert_equal(res, tgt)
  176. # check tensor=True
  177. x = np.vstack([x, 2*x])
  178. res = poly.polyvalfromroots(x, r, tensor=True)
  179. tgt = np.empty(r.shape[1:] + x.shape)
  180. for ii in range(r.shape[1]):
  181. for jj in range(x.shape[0]):
  182. tgt[ii, jj, :] = poly.polyvalfromroots(x[jj], r[:, ii])
  183. assert_equal(res, tgt)
  184. def test_polyval2d(self):
  185. x1, x2, x3 = self.x
  186. y1, y2, y3 = self.y
  187. #test exceptions
  188. assert_raises_regex(ValueError, 'incompatible',
  189. poly.polyval2d, x1, x2[:2], self.c2d)
  190. #test values
  191. tgt = y1*y2
  192. res = poly.polyval2d(x1, x2, self.c2d)
  193. assert_almost_equal(res, tgt)
  194. #test shape
  195. z = np.ones((2, 3))
  196. res = poly.polyval2d(z, z, self.c2d)
  197. assert_(res.shape == (2, 3))
  198. def test_polyval3d(self):
  199. x1, x2, x3 = self.x
  200. y1, y2, y3 = self.y
  201. #test exceptions
  202. assert_raises_regex(ValueError, 'incompatible',
  203. poly.polyval3d, x1, x2, x3[:2], self.c3d)
  204. #test values
  205. tgt = y1*y2*y3
  206. res = poly.polyval3d(x1, x2, x3, self.c3d)
  207. assert_almost_equal(res, tgt)
  208. #test shape
  209. z = np.ones((2, 3))
  210. res = poly.polyval3d(z, z, z, self.c3d)
  211. assert_(res.shape == (2, 3))
  212. def test_polygrid2d(self):
  213. x1, x2, x3 = self.x
  214. y1, y2, y3 = self.y
  215. #test values
  216. tgt = np.einsum('i,j->ij', y1, y2)
  217. res = poly.polygrid2d(x1, x2, self.c2d)
  218. assert_almost_equal(res, tgt)
  219. #test shape
  220. z = np.ones((2, 3))
  221. res = poly.polygrid2d(z, z, self.c2d)
  222. assert_(res.shape == (2, 3)*2)
  223. def test_polygrid3d(self):
  224. x1, x2, x3 = self.x
  225. y1, y2, y3 = self.y
  226. #test values
  227. tgt = np.einsum('i,j,k->ijk', y1, y2, y3)
  228. res = poly.polygrid3d(x1, x2, x3, self.c3d)
  229. assert_almost_equal(res, tgt)
  230. #test shape
  231. z = np.ones((2, 3))
  232. res = poly.polygrid3d(z, z, z, self.c3d)
  233. assert_(res.shape == (2, 3)*3)
  234. class TestIntegral:
  235. def test_polyint(self):
  236. # check exceptions
  237. assert_raises(TypeError, poly.polyint, [0], .5)
  238. assert_raises(ValueError, poly.polyint, [0], -1)
  239. assert_raises(ValueError, poly.polyint, [0], 1, [0, 0])
  240. assert_raises(ValueError, poly.polyint, [0], lbnd=[0])
  241. assert_raises(ValueError, poly.polyint, [0], scl=[0])
  242. assert_raises(TypeError, poly.polyint, [0], axis=.5)
  243. with assert_warns(DeprecationWarning):
  244. poly.polyint([1, 1], 1.)
  245. # test integration of zero polynomial
  246. for i in range(2, 5):
  247. k = [0]*(i - 2) + [1]
  248. res = poly.polyint([0], m=i, k=k)
  249. assert_almost_equal(res, [0, 1])
  250. # check single integration with integration constant
  251. for i in range(5):
  252. scl = i + 1
  253. pol = [0]*i + [1]
  254. tgt = [i] + [0]*i + [1/scl]
  255. res = poly.polyint(pol, m=1, k=[i])
  256. assert_almost_equal(trim(res), trim(tgt))
  257. # check single integration with integration constant and lbnd
  258. for i in range(5):
  259. scl = i + 1
  260. pol = [0]*i + [1]
  261. res = poly.polyint(pol, m=1, k=[i], lbnd=-1)
  262. assert_almost_equal(poly.polyval(-1, res), i)
  263. # check single integration with integration constant and scaling
  264. for i in range(5):
  265. scl = i + 1
  266. pol = [0]*i + [1]
  267. tgt = [i] + [0]*i + [2/scl]
  268. res = poly.polyint(pol, m=1, k=[i], scl=2)
  269. assert_almost_equal(trim(res), trim(tgt))
  270. # check multiple integrations with default k
  271. for i in range(5):
  272. for j in range(2, 5):
  273. pol = [0]*i + [1]
  274. tgt = pol[:]
  275. for k in range(j):
  276. tgt = poly.polyint(tgt, m=1)
  277. res = poly.polyint(pol, m=j)
  278. assert_almost_equal(trim(res), trim(tgt))
  279. # check multiple integrations with defined k
  280. for i in range(5):
  281. for j in range(2, 5):
  282. pol = [0]*i + [1]
  283. tgt = pol[:]
  284. for k in range(j):
  285. tgt = poly.polyint(tgt, m=1, k=[k])
  286. res = poly.polyint(pol, m=j, k=list(range(j)))
  287. assert_almost_equal(trim(res), trim(tgt))
  288. # check multiple integrations with lbnd
  289. for i in range(5):
  290. for j in range(2, 5):
  291. pol = [0]*i + [1]
  292. tgt = pol[:]
  293. for k in range(j):
  294. tgt = poly.polyint(tgt, m=1, k=[k], lbnd=-1)
  295. res = poly.polyint(pol, m=j, k=list(range(j)), lbnd=-1)
  296. assert_almost_equal(trim(res), trim(tgt))
  297. # check multiple integrations with scaling
  298. for i in range(5):
  299. for j in range(2, 5):
  300. pol = [0]*i + [1]
  301. tgt = pol[:]
  302. for k in range(j):
  303. tgt = poly.polyint(tgt, m=1, k=[k], scl=2)
  304. res = poly.polyint(pol, m=j, k=list(range(j)), scl=2)
  305. assert_almost_equal(trim(res), trim(tgt))
  306. def test_polyint_axis(self):
  307. # check that axis keyword works
  308. c2d = np.random.random((3, 4))
  309. tgt = np.vstack([poly.polyint(c) for c in c2d.T]).T
  310. res = poly.polyint(c2d, axis=0)
  311. assert_almost_equal(res, tgt)
  312. tgt = np.vstack([poly.polyint(c) for c in c2d])
  313. res = poly.polyint(c2d, axis=1)
  314. assert_almost_equal(res, tgt)
  315. tgt = np.vstack([poly.polyint(c, k=3) for c in c2d])
  316. res = poly.polyint(c2d, k=3, axis=1)
  317. assert_almost_equal(res, tgt)
  318. class TestDerivative:
  319. def test_polyder(self):
  320. # check exceptions
  321. assert_raises(TypeError, poly.polyder, [0], .5)
  322. assert_raises(ValueError, poly.polyder, [0], -1)
  323. # check that zeroth derivative does nothing
  324. for i in range(5):
  325. tgt = [0]*i + [1]
  326. res = poly.polyder(tgt, m=0)
  327. assert_equal(trim(res), trim(tgt))
  328. # check that derivation is the inverse of integration
  329. for i in range(5):
  330. for j in range(2, 5):
  331. tgt = [0]*i + [1]
  332. res = poly.polyder(poly.polyint(tgt, m=j), m=j)
  333. assert_almost_equal(trim(res), trim(tgt))
  334. # check derivation with scaling
  335. for i in range(5):
  336. for j in range(2, 5):
  337. tgt = [0]*i + [1]
  338. res = poly.polyder(poly.polyint(tgt, m=j, scl=2), m=j, scl=.5)
  339. assert_almost_equal(trim(res), trim(tgt))
  340. def test_polyder_axis(self):
  341. # check that axis keyword works
  342. c2d = np.random.random((3, 4))
  343. tgt = np.vstack([poly.polyder(c) for c in c2d.T]).T
  344. res = poly.polyder(c2d, axis=0)
  345. assert_almost_equal(res, tgt)
  346. tgt = np.vstack([poly.polyder(c) for c in c2d])
  347. res = poly.polyder(c2d, axis=1)
  348. assert_almost_equal(res, tgt)
  349. class TestVander:
  350. # some random values in [-1, 1)
  351. x = np.random.random((3, 5))*2 - 1
  352. def test_polyvander(self):
  353. # check for 1d x
  354. x = np.arange(3)
  355. v = poly.polyvander(x, 3)
  356. assert_(v.shape == (3, 4))
  357. for i in range(4):
  358. coef = [0]*i + [1]
  359. assert_almost_equal(v[..., i], poly.polyval(x, coef))
  360. # check for 2d x
  361. x = np.array([[1, 2], [3, 4], [5, 6]])
  362. v = poly.polyvander(x, 3)
  363. assert_(v.shape == (3, 2, 4))
  364. for i in range(4):
  365. coef = [0]*i + [1]
  366. assert_almost_equal(v[..., i], poly.polyval(x, coef))
  367. def test_polyvander2d(self):
  368. # also tests polyval2d for non-square coefficient array
  369. x1, x2, x3 = self.x
  370. c = np.random.random((2, 3))
  371. van = poly.polyvander2d(x1, x2, [1, 2])
  372. tgt = poly.polyval2d(x1, x2, c)
  373. res = np.dot(van, c.flat)
  374. assert_almost_equal(res, tgt)
  375. # check shape
  376. van = poly.polyvander2d([x1], [x2], [1, 2])
  377. assert_(van.shape == (1, 5, 6))
  378. def test_polyvander3d(self):
  379. # also tests polyval3d for non-square coefficient array
  380. x1, x2, x3 = self.x
  381. c = np.random.random((2, 3, 4))
  382. van = poly.polyvander3d(x1, x2, x3, [1, 2, 3])
  383. tgt = poly.polyval3d(x1, x2, x3, c)
  384. res = np.dot(van, c.flat)
  385. assert_almost_equal(res, tgt)
  386. # check shape
  387. van = poly.polyvander3d([x1], [x2], [x3], [1, 2, 3])
  388. assert_(van.shape == (1, 5, 24))
  389. def test_polyvandernegdeg(self):
  390. x = np.arange(3)
  391. assert_raises(ValueError, poly.polyvander, x, -1)
  392. class TestCompanion:
  393. def test_raises(self):
  394. assert_raises(ValueError, poly.polycompanion, [])
  395. assert_raises(ValueError, poly.polycompanion, [1])
  396. def test_dimensions(self):
  397. for i in range(1, 5):
  398. coef = [0]*i + [1]
  399. assert_(poly.polycompanion(coef).shape == (i, i))
  400. def test_linear_root(self):
  401. assert_(poly.polycompanion([1, 2])[0, 0] == -.5)
  402. class TestMisc:
  403. def test_polyfromroots(self):
  404. res = poly.polyfromroots([])
  405. assert_almost_equal(trim(res), [1])
  406. for i in range(1, 5):
  407. roots = np.cos(np.linspace(-np.pi, 0, 2*i + 1)[1::2])
  408. tgt = Tlist[i]
  409. res = poly.polyfromroots(roots)*2**(i-1)
  410. assert_almost_equal(trim(res), trim(tgt))
  411. def test_polyroots(self):
  412. assert_almost_equal(poly.polyroots([1]), [])
  413. assert_almost_equal(poly.polyroots([1, 2]), [-.5])
  414. for i in range(2, 5):
  415. tgt = np.linspace(-1, 1, i)
  416. res = poly.polyroots(poly.polyfromroots(tgt))
  417. assert_almost_equal(trim(res), trim(tgt))
  418. def test_polyfit(self):
  419. def f(x):
  420. return x*(x - 1)*(x - 2)
  421. def f2(x):
  422. return x**4 + x**2 + 1
  423. # Test exceptions
  424. assert_raises(ValueError, poly.polyfit, [1], [1], -1)
  425. assert_raises(TypeError, poly.polyfit, [[1]], [1], 0)
  426. assert_raises(TypeError, poly.polyfit, [], [1], 0)
  427. assert_raises(TypeError, poly.polyfit, [1], [[[1]]], 0)
  428. assert_raises(TypeError, poly.polyfit, [1, 2], [1], 0)
  429. assert_raises(TypeError, poly.polyfit, [1], [1, 2], 0)
  430. assert_raises(TypeError, poly.polyfit, [1], [1], 0, w=[[1]])
  431. assert_raises(TypeError, poly.polyfit, [1], [1], 0, w=[1, 1])
  432. assert_raises(ValueError, poly.polyfit, [1], [1], [-1,])
  433. assert_raises(ValueError, poly.polyfit, [1], [1], [2, -1, 6])
  434. assert_raises(TypeError, poly.polyfit, [1], [1], [])
  435. # Test fit
  436. x = np.linspace(0, 2)
  437. y = f(x)
  438. #
  439. coef3 = poly.polyfit(x, y, 3)
  440. assert_equal(len(coef3), 4)
  441. assert_almost_equal(poly.polyval(x, coef3), y)
  442. coef3 = poly.polyfit(x, y, [0, 1, 2, 3])
  443. assert_equal(len(coef3), 4)
  444. assert_almost_equal(poly.polyval(x, coef3), y)
  445. #
  446. coef4 = poly.polyfit(x, y, 4)
  447. assert_equal(len(coef4), 5)
  448. assert_almost_equal(poly.polyval(x, coef4), y)
  449. coef4 = poly.polyfit(x, y, [0, 1, 2, 3, 4])
  450. assert_equal(len(coef4), 5)
  451. assert_almost_equal(poly.polyval(x, coef4), y)
  452. #
  453. coef2d = poly.polyfit(x, np.array([y, y]).T, 3)
  454. assert_almost_equal(coef2d, np.array([coef3, coef3]).T)
  455. coef2d = poly.polyfit(x, np.array([y, y]).T, [0, 1, 2, 3])
  456. assert_almost_equal(coef2d, np.array([coef3, coef3]).T)
  457. # test weighting
  458. w = np.zeros_like(x)
  459. yw = y.copy()
  460. w[1::2] = 1
  461. yw[0::2] = 0
  462. wcoef3 = poly.polyfit(x, yw, 3, w=w)
  463. assert_almost_equal(wcoef3, coef3)
  464. wcoef3 = poly.polyfit(x, yw, [0, 1, 2, 3], w=w)
  465. assert_almost_equal(wcoef3, coef3)
  466. #
  467. wcoef2d = poly.polyfit(x, np.array([yw, yw]).T, 3, w=w)
  468. assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T)
  469. wcoef2d = poly.polyfit(x, np.array([yw, yw]).T, [0, 1, 2, 3], w=w)
  470. assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T)
  471. # test scaling with complex values x points whose square
  472. # is zero when summed.
  473. x = [1, 1j, -1, -1j]
  474. assert_almost_equal(poly.polyfit(x, x, 1), [0, 1])
  475. assert_almost_equal(poly.polyfit(x, x, [0, 1]), [0, 1])
  476. # test fitting only even Polyendre polynomials
  477. x = np.linspace(-1, 1)
  478. y = f2(x)
  479. coef1 = poly.polyfit(x, y, 4)
  480. assert_almost_equal(poly.polyval(x, coef1), y)
  481. coef2 = poly.polyfit(x, y, [0, 2, 4])
  482. assert_almost_equal(poly.polyval(x, coef2), y)
  483. assert_almost_equal(coef1, coef2)
  484. def test_polytrim(self):
  485. coef = [2, -1, 1, 0]
  486. # Test exceptions
  487. assert_raises(ValueError, poly.polytrim, coef, -1)
  488. # Test results
  489. assert_equal(poly.polytrim(coef), coef[:-1])
  490. assert_equal(poly.polytrim(coef, 1), coef[:-3])
  491. assert_equal(poly.polytrim(coef, 2), [0])
  492. def test_polyline(self):
  493. assert_equal(poly.polyline(3, 4), [3, 4])
  494. def test_polyline_zero(self):
  495. assert_equal(poly.polyline(3, 0), [3])