m2m模型翻译
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

579 lines
20 KiB

6 months ago
  1. import sys
  2. from typing import Any, Callable, Dict, Optional, Tuple, Type, Union, overload
  3. from numpy import (
  4. bool_,
  5. dtype,
  6. float32,
  7. float64,
  8. int8,
  9. int16,
  10. int32,
  11. int64,
  12. int_,
  13. ndarray,
  14. uint,
  15. uint8,
  16. uint16,
  17. uint32,
  18. uint64,
  19. )
  20. from numpy.random.bit_generator import BitGenerator
  21. from numpy.typing import (
  22. ArrayLike,
  23. _ArrayLikeFloat_co,
  24. _ArrayLikeInt_co,
  25. _DoubleCodes,
  26. _DTypeLikeBool,
  27. _DTypeLikeInt,
  28. _DTypeLikeUInt,
  29. _Float32Codes,
  30. _Float64Codes,
  31. _Int8Codes,
  32. _Int16Codes,
  33. _Int32Codes,
  34. _Int64Codes,
  35. _IntCodes,
  36. _ShapeLike,
  37. _SingleCodes,
  38. _SupportsDType,
  39. _UInt8Codes,
  40. _UInt16Codes,
  41. _UInt32Codes,
  42. _UInt64Codes,
  43. _UIntCodes,
  44. )
  45. if sys.version_info >= (3, 8):
  46. from typing import Literal
  47. else:
  48. from typing_extensions import Literal
  49. _DTypeLikeFloat32 = Union[
  50. dtype[float32],
  51. _SupportsDType[dtype[float32]],
  52. Type[float32],
  53. _Float32Codes,
  54. _SingleCodes,
  55. ]
  56. _DTypeLikeFloat64 = Union[
  57. dtype[float64],
  58. _SupportsDType[dtype[float64]],
  59. Type[float],
  60. Type[float64],
  61. _Float64Codes,
  62. _DoubleCodes,
  63. ]
  64. class RandomState:
  65. _bit_generator: BitGenerator
  66. def __init__(self, seed: Union[None, _ArrayLikeInt_co, BitGenerator] = ...) -> None: ...
  67. def __repr__(self) -> str: ...
  68. def __str__(self) -> str: ...
  69. def __getstate__(self) -> Dict[str, Any]: ...
  70. def __setstate__(self, state: Dict[str, Any]) -> None: ...
  71. def __reduce__(self) -> Tuple[Callable[[str], RandomState], Tuple[str], Dict[str, Any]]: ...
  72. def seed(self, seed: Optional[_ArrayLikeFloat_co] = ...) -> None: ...
  73. @overload
  74. def get_state(self, legacy: Literal[False] = ...) -> Dict[str, Any]: ...
  75. @overload
  76. def get_state(
  77. self, legacy: Literal[True] = ...
  78. ) -> Union[Dict[str, Any], Tuple[str, ndarray[Any, dtype[uint32]], int, int, float]]: ...
  79. def set_state(
  80. self, state: Union[Dict[str, Any], Tuple[str, ndarray[Any, dtype[uint32]], int, int, float]]
  81. ) -> None: ...
  82. @overload
  83. def random_sample(self, size: None = ...) -> float: ... # type: ignore[misc]
  84. @overload
  85. def random_sample(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ...
  86. @overload
  87. def random(self, size: None = ...) -> float: ... # type: ignore[misc]
  88. @overload
  89. def random(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ...
  90. @overload
  91. def beta(self, a: float, b: float, size: None = ...) -> float: ... # type: ignore[misc]
  92. @overload
  93. def beta(
  94. self, a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ...
  95. ) -> ndarray[Any, dtype[float64]]: ...
  96. @overload
  97. def exponential(self, scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
  98. @overload
  99. def exponential(
  100. self, scale: _ArrayLikeFloat_co = ..., size: Optional[_ShapeLike] = ...
  101. ) -> ndarray[Any, dtype[float64]]: ...
  102. @overload
  103. def standard_exponential(self, size: None = ...) -> float: ... # type: ignore[misc]
  104. @overload
  105. def standard_exponential(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ...
  106. @overload
  107. def tomaxint(self, size: None = ...) -> int: ... # type: ignore[misc]
  108. @overload
  109. def tomaxint(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[int_]]: ...
  110. @overload
  111. def randint( # type: ignore[misc]
  112. self,
  113. low: int,
  114. high: Optional[int] = ...,
  115. ) -> int: ...
  116. @overload
  117. def randint( # type: ignore[misc]
  118. self,
  119. low: int,
  120. high: Optional[int] = ...,
  121. size: None = ...,
  122. dtype: _DTypeLikeBool = ...,
  123. ) -> bool: ...
  124. @overload
  125. def randint( # type: ignore[misc]
  126. self,
  127. low: int,
  128. high: Optional[int] = ...,
  129. size: None = ...,
  130. dtype: Union[_DTypeLikeInt, _DTypeLikeUInt] = ...,
  131. ) -> int: ...
  132. @overload
  133. def randint( # type: ignore[misc]
  134. self,
  135. low: _ArrayLikeInt_co,
  136. high: Optional[_ArrayLikeInt_co] = ...,
  137. size: Optional[_ShapeLike] = ...,
  138. ) -> ndarray[Any, dtype[int_]]: ...
  139. @overload
  140. def randint( # type: ignore[misc]
  141. self,
  142. low: _ArrayLikeInt_co,
  143. high: Optional[_ArrayLikeInt_co] = ...,
  144. size: Optional[_ShapeLike] = ...,
  145. dtype: _DTypeLikeBool = ...,
  146. ) -> ndarray[Any, dtype[bool_]]: ...
  147. @overload
  148. def randint( # type: ignore[misc]
  149. self,
  150. low: _ArrayLikeInt_co,
  151. high: Optional[_ArrayLikeInt_co] = ...,
  152. size: Optional[_ShapeLike] = ...,
  153. dtype: Union[dtype[int8], Type[int8], _Int8Codes, _SupportsDType[dtype[int8]]] = ...,
  154. ) -> ndarray[Any, dtype[int8]]: ...
  155. @overload
  156. def randint( # type: ignore[misc]
  157. self,
  158. low: _ArrayLikeInt_co,
  159. high: Optional[_ArrayLikeInt_co] = ...,
  160. size: Optional[_ShapeLike] = ...,
  161. dtype: Union[dtype[int16], Type[int16], _Int16Codes, _SupportsDType[dtype[int16]]] = ...,
  162. ) -> ndarray[Any, dtype[int16]]: ...
  163. @overload
  164. def randint( # type: ignore[misc]
  165. self,
  166. low: _ArrayLikeInt_co,
  167. high: Optional[_ArrayLikeInt_co] = ...,
  168. size: Optional[_ShapeLike] = ...,
  169. dtype: Union[dtype[int32], Type[int32], _Int32Codes, _SupportsDType[dtype[int32]]] = ...,
  170. ) -> ndarray[Any, dtype[Union[int32]]]: ...
  171. @overload
  172. def randint( # type: ignore[misc]
  173. self,
  174. low: _ArrayLikeInt_co,
  175. high: Optional[_ArrayLikeInt_co] = ...,
  176. size: Optional[_ShapeLike] = ...,
  177. dtype: Optional[
  178. Union[dtype[int64], Type[int64], _Int64Codes, _SupportsDType[dtype[int64]]]
  179. ] = ...,
  180. ) -> ndarray[Any, dtype[int64]]: ...
  181. @overload
  182. def randint( # type: ignore[misc]
  183. self,
  184. low: _ArrayLikeInt_co,
  185. high: Optional[_ArrayLikeInt_co] = ...,
  186. size: Optional[_ShapeLike] = ...,
  187. dtype: Union[dtype[uint8], Type[uint8], _UInt8Codes, _SupportsDType[dtype[uint8]]] = ...,
  188. ) -> ndarray[Any, dtype[uint8]]: ...
  189. @overload
  190. def randint( # type: ignore[misc]
  191. self,
  192. low: _ArrayLikeInt_co,
  193. high: Optional[_ArrayLikeInt_co] = ...,
  194. size: Optional[_ShapeLike] = ...,
  195. dtype: Union[
  196. dtype[uint16], Type[uint16], _UInt16Codes, _SupportsDType[dtype[uint16]]
  197. ] = ...,
  198. ) -> ndarray[Any, dtype[Union[uint16]]]: ...
  199. @overload
  200. def randint( # type: ignore[misc]
  201. self,
  202. low: _ArrayLikeInt_co,
  203. high: Optional[_ArrayLikeInt_co] = ...,
  204. size: Optional[_ShapeLike] = ...,
  205. dtype: Union[
  206. dtype[uint32], Type[uint32], _UInt32Codes, _SupportsDType[dtype[uint32]]
  207. ] = ...,
  208. ) -> ndarray[Any, dtype[uint32]]: ...
  209. @overload
  210. def randint( # type: ignore[misc]
  211. self,
  212. low: _ArrayLikeInt_co,
  213. high: Optional[_ArrayLikeInt_co] = ...,
  214. size: Optional[_ShapeLike] = ...,
  215. dtype: Union[
  216. dtype[uint64], Type[uint64], _UInt64Codes, _SupportsDType[dtype[uint64]]
  217. ] = ...,
  218. ) -> ndarray[Any, dtype[uint64]]: ...
  219. @overload
  220. def randint( # type: ignore[misc]
  221. self,
  222. low: _ArrayLikeInt_co,
  223. high: Optional[_ArrayLikeInt_co] = ...,
  224. size: Optional[_ShapeLike] = ...,
  225. dtype: Union[
  226. dtype[int_], Type[int], Type[int_], _IntCodes, _SupportsDType[dtype[int_]]
  227. ] = ...,
  228. ) -> ndarray[Any, dtype[int_]]: ...
  229. @overload
  230. def randint( # type: ignore[misc]
  231. self,
  232. low: _ArrayLikeInt_co,
  233. high: Optional[_ArrayLikeInt_co] = ...,
  234. size: Optional[_ShapeLike] = ...,
  235. dtype: Union[dtype[uint], Type[uint], _UIntCodes, _SupportsDType[dtype[uint]]] = ...,
  236. ) -> ndarray[Any, dtype[uint]]: ...
  237. def bytes(self, length: int) -> bytes: ...
  238. @overload
  239. def choice(
  240. self,
  241. a: int,
  242. size: None = ...,
  243. replace: bool = ...,
  244. p: Optional[_ArrayLikeFloat_co] = ...,
  245. ) -> int: ...
  246. @overload
  247. def choice(
  248. self,
  249. a: int,
  250. size: _ShapeLike = ...,
  251. replace: bool = ...,
  252. p: Optional[_ArrayLikeFloat_co] = ...,
  253. ) -> ndarray[Any, dtype[int_]]: ...
  254. @overload
  255. def choice(
  256. self,
  257. a: ArrayLike,
  258. size: None = ...,
  259. replace: bool = ...,
  260. p: Optional[_ArrayLikeFloat_co] = ...,
  261. ) -> Any: ...
  262. @overload
  263. def choice(
  264. self,
  265. a: ArrayLike,
  266. size: _ShapeLike = ...,
  267. replace: bool = ...,
  268. p: Optional[_ArrayLikeFloat_co] = ...,
  269. ) -> ndarray[Any, Any]: ...
  270. @overload
  271. def uniform(self, low: float = ..., high: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
  272. @overload
  273. def uniform(
  274. self,
  275. low: _ArrayLikeFloat_co = ...,
  276. high: _ArrayLikeFloat_co = ...,
  277. size: Optional[_ShapeLike] = ...,
  278. ) -> ndarray[Any, dtype[float64]]: ...
  279. @overload
  280. def rand(self) -> float: ...
  281. @overload
  282. def rand(self, *args: int) -> ndarray[Any, dtype[float64]]: ...
  283. @overload
  284. def randn(self) -> float: ...
  285. @overload
  286. def randn(self, *args: int) -> ndarray[Any, dtype[float64]]: ...
  287. @overload
  288. def random_integers(self, low: int, high: Optional[int] = ..., size: None = ...) -> int: ... # type: ignore[misc]
  289. @overload
  290. def random_integers(
  291. self,
  292. low: _ArrayLikeInt_co,
  293. high: Optional[_ArrayLikeInt_co] = ...,
  294. size: Optional[_ShapeLike] = ...,
  295. ) -> ndarray[Any, dtype[int_]]: ...
  296. @overload
  297. def standard_normal(self, size: None = ...) -> float: ... # type: ignore[misc]
  298. @overload
  299. def standard_normal( # type: ignore[misc]
  300. self, size: _ShapeLike = ...
  301. ) -> ndarray[Any, dtype[float64]]: ...
  302. @overload
  303. def normal(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
  304. @overload
  305. def normal(
  306. self,
  307. loc: _ArrayLikeFloat_co = ...,
  308. scale: _ArrayLikeFloat_co = ...,
  309. size: Optional[_ShapeLike] = ...,
  310. ) -> ndarray[Any, dtype[float64]]: ...
  311. @overload
  312. def standard_gamma( # type: ignore[misc]
  313. self,
  314. shape: float,
  315. size: None = ...,
  316. ) -> float: ...
  317. @overload
  318. def standard_gamma(
  319. self,
  320. shape: _ArrayLikeFloat_co,
  321. size: Optional[_ShapeLike] = ...,
  322. ) -> ndarray[Any, dtype[float64]]: ...
  323. @overload
  324. def gamma(self, shape: float, scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
  325. @overload
  326. def gamma(
  327. self,
  328. shape: _ArrayLikeFloat_co,
  329. scale: _ArrayLikeFloat_co = ...,
  330. size: Optional[_ShapeLike] = ...,
  331. ) -> ndarray[Any, dtype[float64]]: ...
  332. @overload
  333. def f(self, dfnum: float, dfden: float, size: None = ...) -> float: ... # type: ignore[misc]
  334. @overload
  335. def f(
  336. self, dfnum: _ArrayLikeFloat_co, dfden: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ...
  337. ) -> ndarray[Any, dtype[float64]]: ...
  338. @overload
  339. def noncentral_f(self, dfnum: float, dfden: float, nonc: float, size: None = ...) -> float: ... # type: ignore[misc]
  340. @overload
  341. def noncentral_f(
  342. self,
  343. dfnum: _ArrayLikeFloat_co,
  344. dfden: _ArrayLikeFloat_co,
  345. nonc: _ArrayLikeFloat_co,
  346. size: Optional[_ShapeLike] = ...,
  347. ) -> ndarray[Any, dtype[float64]]: ...
  348. @overload
  349. def chisquare(self, df: float, size: None = ...) -> float: ... # type: ignore[misc]
  350. @overload
  351. def chisquare(
  352. self, df: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ...
  353. ) -> ndarray[Any, dtype[float64]]: ...
  354. @overload
  355. def noncentral_chisquare(self, df: float, nonc: float, size: None = ...) -> float: ... # type: ignore[misc]
  356. @overload
  357. def noncentral_chisquare(
  358. self, df: _ArrayLikeFloat_co, nonc: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ...
  359. ) -> ndarray[Any, dtype[float64]]: ...
  360. @overload
  361. def standard_t(self, df: float, size: None = ...) -> float: ... # type: ignore[misc]
  362. @overload
  363. def standard_t(
  364. self, df: _ArrayLikeFloat_co, size: None = ...
  365. ) -> ndarray[Any, dtype[float64]]: ...
  366. @overload
  367. def standard_t(
  368. self, df: _ArrayLikeFloat_co, size: _ShapeLike = ...
  369. ) -> ndarray[Any, dtype[float64]]: ...
  370. @overload
  371. def vonmises(self, mu: float, kappa: float, size: None = ...) -> float: ... # type: ignore[misc]
  372. @overload
  373. def vonmises(
  374. self, mu: _ArrayLikeFloat_co, kappa: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ...
  375. ) -> ndarray[Any, dtype[float64]]: ...
  376. @overload
  377. def pareto(self, a: float, size: None = ...) -> float: ... # type: ignore[misc]
  378. @overload
  379. def pareto(
  380. self, a: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ...
  381. ) -> ndarray[Any, dtype[float64]]: ...
  382. @overload
  383. def weibull(self, a: float, size: None = ...) -> float: ... # type: ignore[misc]
  384. @overload
  385. def weibull(
  386. self, a: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ...
  387. ) -> ndarray[Any, dtype[float64]]: ...
  388. @overload
  389. def power(self, a: float, size: None = ...) -> float: ... # type: ignore[misc]
  390. @overload
  391. def power(
  392. self, a: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ...
  393. ) -> ndarray[Any, dtype[float64]]: ...
  394. @overload
  395. def standard_cauchy(self, size: None = ...) -> float: ... # type: ignore[misc]
  396. @overload
  397. def standard_cauchy(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ...
  398. @overload
  399. def laplace(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
  400. @overload
  401. def laplace(
  402. self,
  403. loc: _ArrayLikeFloat_co = ...,
  404. scale: _ArrayLikeFloat_co = ...,
  405. size: Optional[_ShapeLike] = ...,
  406. ) -> ndarray[Any, dtype[float64]]: ...
  407. @overload
  408. def gumbel(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
  409. @overload
  410. def gumbel(
  411. self,
  412. loc: _ArrayLikeFloat_co = ...,
  413. scale: _ArrayLikeFloat_co = ...,
  414. size: Optional[_ShapeLike] = ...,
  415. ) -> ndarray[Any, dtype[float64]]: ...
  416. @overload
  417. def logistic(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
  418. @overload
  419. def logistic(
  420. self,
  421. loc: _ArrayLikeFloat_co = ...,
  422. scale: _ArrayLikeFloat_co = ...,
  423. size: Optional[_ShapeLike] = ...,
  424. ) -> ndarray[Any, dtype[float64]]: ...
  425. @overload
  426. def lognormal(self, mean: float = ..., sigma: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
  427. @overload
  428. def lognormal(
  429. self,
  430. mean: _ArrayLikeFloat_co = ...,
  431. sigma: _ArrayLikeFloat_co = ...,
  432. size: Optional[_ShapeLike] = ...,
  433. ) -> ndarray[Any, dtype[float64]]: ...
  434. @overload
  435. def rayleigh(self, scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
  436. @overload
  437. def rayleigh(
  438. self, scale: _ArrayLikeFloat_co = ..., size: Optional[_ShapeLike] = ...
  439. ) -> ndarray[Any, dtype[float64]]: ...
  440. @overload
  441. def wald(self, mean: float, scale: float, size: None = ...) -> float: ... # type: ignore[misc]
  442. @overload
  443. def wald(
  444. self, mean: _ArrayLikeFloat_co, scale: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ...
  445. ) -> ndarray[Any, dtype[float64]]: ...
  446. @overload
  447. def triangular(self, left: float, mode: float, right: float, size: None = ...) -> float: ... # type: ignore[misc]
  448. @overload
  449. def triangular(
  450. self,
  451. left: _ArrayLikeFloat_co,
  452. mode: _ArrayLikeFloat_co,
  453. right: _ArrayLikeFloat_co,
  454. size: Optional[_ShapeLike] = ...,
  455. ) -> ndarray[Any, dtype[float64]]: ...
  456. @overload
  457. def binomial(self, n: int, p: float, size: None = ...) -> int: ... # type: ignore[misc]
  458. @overload
  459. def binomial(
  460. self, n: _ArrayLikeInt_co, p: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ...
  461. ) -> ndarray[Any, dtype[int_]]: ...
  462. @overload
  463. def negative_binomial(self, n: float, p: float, size: None = ...) -> int: ... # type: ignore[misc]
  464. @overload
  465. def negative_binomial(
  466. self, n: _ArrayLikeFloat_co, p: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ...
  467. ) -> ndarray[Any, dtype[int_]]: ...
  468. @overload
  469. def poisson(self, lam: float = ..., size: None = ...) -> int: ... # type: ignore[misc]
  470. @overload
  471. def poisson(
  472. self, lam: _ArrayLikeFloat_co = ..., size: Optional[_ShapeLike] = ...
  473. ) -> ndarray[Any, dtype[int_]]: ...
  474. @overload
  475. def zipf(self, a: float, size: None = ...) -> int: ... # type: ignore[misc]
  476. @overload
  477. def zipf(
  478. self, a: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ...
  479. ) -> ndarray[Any, dtype[int_]]: ...
  480. @overload
  481. def geometric(self, p: float, size: None = ...) -> int: ... # type: ignore[misc]
  482. @overload
  483. def geometric(
  484. self, p: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ...
  485. ) -> ndarray[Any, dtype[int_]]: ...
  486. @overload
  487. def hypergeometric(self, ngood: int, nbad: int, nsample: int, size: None = ...) -> int: ... # type: ignore[misc]
  488. @overload
  489. def hypergeometric(
  490. self,
  491. ngood: _ArrayLikeInt_co,
  492. nbad: _ArrayLikeInt_co,
  493. nsample: _ArrayLikeInt_co,
  494. size: Optional[_ShapeLike] = ...,
  495. ) -> ndarray[Any, dtype[int_]]: ...
  496. @overload
  497. def logseries(self, p: float, size: None = ...) -> int: ... # type: ignore[misc]
  498. @overload
  499. def logseries(
  500. self, p: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ...
  501. ) -> ndarray[Any, dtype[int_]]: ...
  502. def multivariate_normal(
  503. self,
  504. mean: _ArrayLikeFloat_co,
  505. cov: _ArrayLikeFloat_co,
  506. size: Optional[_ShapeLike] = ...,
  507. check_valid: Literal["warn", "raise", "ignore"] = ...,
  508. tol: float = ...,
  509. ) -> ndarray[Any, dtype[float64]]: ...
  510. def multinomial(
  511. self, n: _ArrayLikeInt_co, pvals: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ...
  512. ) -> ndarray[Any, dtype[int_]]: ...
  513. def dirichlet(
  514. self, alpha: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ...
  515. ) -> ndarray[Any, dtype[float64]]: ...
  516. def shuffle(self, x: ArrayLike) -> None: ...
  517. @overload
  518. def permutation(self, x: int) -> ndarray[Any, dtype[int_]]: ...
  519. @overload
  520. def permutation(self, x: ArrayLike) -> ndarray[Any, Any]: ...
  521. _rand: RandomState
  522. beta = _rand.beta
  523. binomial = _rand.binomial
  524. bytes = _rand.bytes
  525. chisquare = _rand.chisquare
  526. choice = _rand.choice
  527. dirichlet = _rand.dirichlet
  528. exponential = _rand.exponential
  529. f = _rand.f
  530. gamma = _rand.gamma
  531. get_state = _rand.get_state
  532. geometric = _rand.geometric
  533. gumbel = _rand.gumbel
  534. hypergeometric = _rand.hypergeometric
  535. laplace = _rand.laplace
  536. logistic = _rand.logistic
  537. lognormal = _rand.lognormal
  538. logseries = _rand.logseries
  539. multinomial = _rand.multinomial
  540. multivariate_normal = _rand.multivariate_normal
  541. negative_binomial = _rand.negative_binomial
  542. noncentral_chisquare = _rand.noncentral_chisquare
  543. noncentral_f = _rand.noncentral_f
  544. normal = _rand.normal
  545. pareto = _rand.pareto
  546. permutation = _rand.permutation
  547. poisson = _rand.poisson
  548. power = _rand.power
  549. rand = _rand.rand
  550. randint = _rand.randint
  551. randn = _rand.randn
  552. random = _rand.random
  553. random_integers = _rand.random_integers
  554. random_sample = _rand.random_sample
  555. rayleigh = _rand.rayleigh
  556. seed = _rand.seed
  557. set_state = _rand.set_state
  558. shuffle = _rand.shuffle
  559. standard_cauchy = _rand.standard_cauchy
  560. standard_exponential = _rand.standard_exponential
  561. standard_gamma = _rand.standard_gamma
  562. standard_normal = _rand.standard_normal
  563. standard_t = _rand.standard_t
  564. triangular = _rand.triangular
  565. uniform = _rand.uniform
  566. vonmises = _rand.vonmises
  567. wald = _rand.wald
  568. weibull = _rand.weibull
  569. zipf = _rand.zipf
  570. # Two legacy that are trivial wrappers around random_sample
  571. sample = _rand.random_sample
  572. ranf = _rand.random_sample