m2m模型翻译
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2606 lines
107 KiB

6 months ago
  1. import sys
  2. import hashlib
  3. import pytest
  4. import numpy as np
  5. from numpy.linalg import LinAlgError
  6. from numpy.testing import (
  7. assert_, assert_raises, assert_equal, assert_allclose,
  8. assert_warns, assert_no_warnings, assert_array_equal,
  9. assert_array_almost_equal, suppress_warnings)
  10. from numpy.random import Generator, MT19937, SeedSequence, RandomState
  11. random = Generator(MT19937())
  12. JUMP_TEST_DATA = [
  13. {
  14. "seed": 0,
  15. "steps": 10,
  16. "initial": {"key_sha256": "bb1636883c2707b51c5b7fc26c6927af4430f2e0785a8c7bc886337f919f9edf", "pos": 9},
  17. "jumped": {"key_sha256": "ff682ac12bb140f2d72fba8d3506cf4e46817a0db27aae1683867629031d8d55", "pos": 598},
  18. },
  19. {
  20. "seed":384908324,
  21. "steps":312,
  22. "initial": {"key_sha256": "16b791a1e04886ccbbb4d448d6ff791267dc458ae599475d08d5cced29d11614", "pos": 311},
  23. "jumped": {"key_sha256": "a0110a2cf23b56be0feaed8f787a7fc84bef0cb5623003d75b26bdfa1c18002c", "pos": 276},
  24. },
  25. {
  26. "seed": [839438204, 980239840, 859048019, 821],
  27. "steps": 511,
  28. "initial": {"key_sha256": "d306cf01314d51bd37892d874308200951a35265ede54d200f1e065004c3e9ea", "pos": 510},
  29. "jumped": {"key_sha256": "0e00ab449f01a5195a83b4aee0dfbc2ce8d46466a640b92e33977d2e42f777f8", "pos": 475},
  30. },
  31. ]
  32. @pytest.fixture(scope='module', params=[True, False])
  33. def endpoint(request):
  34. return request.param
  35. class TestSeed:
  36. def test_scalar(self):
  37. s = Generator(MT19937(0))
  38. assert_equal(s.integers(1000), 479)
  39. s = Generator(MT19937(4294967295))
  40. assert_equal(s.integers(1000), 324)
  41. def test_array(self):
  42. s = Generator(MT19937(range(10)))
  43. assert_equal(s.integers(1000), 465)
  44. s = Generator(MT19937(np.arange(10)))
  45. assert_equal(s.integers(1000), 465)
  46. s = Generator(MT19937([0]))
  47. assert_equal(s.integers(1000), 479)
  48. s = Generator(MT19937([4294967295]))
  49. assert_equal(s.integers(1000), 324)
  50. def test_seedsequence(self):
  51. s = MT19937(SeedSequence(0))
  52. assert_equal(s.random_raw(1), 2058676884)
  53. def test_invalid_scalar(self):
  54. # seed must be an unsigned 32 bit integer
  55. assert_raises(TypeError, MT19937, -0.5)
  56. assert_raises(ValueError, MT19937, -1)
  57. def test_invalid_array(self):
  58. # seed must be an unsigned integer
  59. assert_raises(TypeError, MT19937, [-0.5])
  60. assert_raises(ValueError, MT19937, [-1])
  61. assert_raises(ValueError, MT19937, [1, -2, 4294967296])
  62. def test_noninstantized_bitgen(self):
  63. assert_raises(ValueError, Generator, MT19937)
  64. class TestBinomial:
  65. def test_n_zero(self):
  66. # Tests the corner case of n == 0 for the binomial distribution.
  67. # binomial(0, p) should be zero for any p in [0, 1].
  68. # This test addresses issue #3480.
  69. zeros = np.zeros(2, dtype='int')
  70. for p in [0, .5, 1]:
  71. assert_(random.binomial(0, p) == 0)
  72. assert_array_equal(random.binomial(zeros, p), zeros)
  73. def test_p_is_nan(self):
  74. # Issue #4571.
  75. assert_raises(ValueError, random.binomial, 1, np.nan)
  76. class TestMultinomial:
  77. def test_basic(self):
  78. random.multinomial(100, [0.2, 0.8])
  79. def test_zero_probability(self):
  80. random.multinomial(100, [0.2, 0.8, 0.0, 0.0, 0.0])
  81. def test_int_negative_interval(self):
  82. assert_(-5 <= random.integers(-5, -1) < -1)
  83. x = random.integers(-5, -1, 5)
  84. assert_(np.all(-5 <= x))
  85. assert_(np.all(x < -1))
  86. def test_size(self):
  87. # gh-3173
  88. p = [0.5, 0.5]
  89. assert_equal(random.multinomial(1, p, np.uint32(1)).shape, (1, 2))
  90. assert_equal(random.multinomial(1, p, np.uint32(1)).shape, (1, 2))
  91. assert_equal(random.multinomial(1, p, np.uint32(1)).shape, (1, 2))
  92. assert_equal(random.multinomial(1, p, [2, 2]).shape, (2, 2, 2))
  93. assert_equal(random.multinomial(1, p, (2, 2)).shape, (2, 2, 2))
  94. assert_equal(random.multinomial(1, p, np.array((2, 2))).shape,
  95. (2, 2, 2))
  96. assert_raises(TypeError, random.multinomial, 1, p,
  97. float(1))
  98. def test_invalid_prob(self):
  99. assert_raises(ValueError, random.multinomial, 100, [1.1, 0.2])
  100. assert_raises(ValueError, random.multinomial, 100, [-.1, 0.9])
  101. def test_invalid_n(self):
  102. assert_raises(ValueError, random.multinomial, -1, [0.8, 0.2])
  103. assert_raises(ValueError, random.multinomial, [-1] * 10, [0.8, 0.2])
  104. def test_p_non_contiguous(self):
  105. p = np.arange(15.)
  106. p /= np.sum(p[1::3])
  107. pvals = p[1::3]
  108. random = Generator(MT19937(1432985819))
  109. non_contig = random.multinomial(100, pvals=pvals)
  110. random = Generator(MT19937(1432985819))
  111. contig = random.multinomial(100, pvals=np.ascontiguousarray(pvals))
  112. assert_array_equal(non_contig, contig)
  113. def test_multidimensional_pvals(self):
  114. assert_raises(ValueError, random.multinomial, 10, [[0, 1]])
  115. assert_raises(ValueError, random.multinomial, 10, [[0], [1]])
  116. assert_raises(ValueError, random.multinomial, 10, [[[0], [1]], [[1], [0]]])
  117. assert_raises(ValueError, random.multinomial, 10, np.array([[0, 1], [1, 0]]))
  118. def test_multinomial_pvals_float32(self):
  119. x = np.array([9.9e-01, 9.9e-01, 1.0e-09, 1.0e-09, 1.0e-09, 1.0e-09,
  120. 1.0e-09, 1.0e-09, 1.0e-09, 1.0e-09], dtype=np.float32)
  121. pvals = x / x.sum()
  122. random = Generator(MT19937(1432985819))
  123. match = r"[\w\s]*pvals array is cast to 64-bit floating"
  124. with pytest.raises(ValueError, match=match):
  125. random.multinomial(1, pvals)
  126. class TestMultivariateHypergeometric:
  127. def setup(self):
  128. self.seed = 8675309
  129. def test_argument_validation(self):
  130. # Error cases...
  131. # `colors` must be a 1-d sequence
  132. assert_raises(ValueError, random.multivariate_hypergeometric,
  133. 10, 4)
  134. # Negative nsample
  135. assert_raises(ValueError, random.multivariate_hypergeometric,
  136. [2, 3, 4], -1)
  137. # Negative color
  138. assert_raises(ValueError, random.multivariate_hypergeometric,
  139. [-1, 2, 3], 2)
  140. # nsample exceeds sum(colors)
  141. assert_raises(ValueError, random.multivariate_hypergeometric,
  142. [2, 3, 4], 10)
  143. # nsample exceeds sum(colors) (edge case of empty colors)
  144. assert_raises(ValueError, random.multivariate_hypergeometric,
  145. [], 1)
  146. # Validation errors associated with very large values in colors.
  147. assert_raises(ValueError, random.multivariate_hypergeometric,
  148. [999999999, 101], 5, 1, 'marginals')
  149. int64_info = np.iinfo(np.int64)
  150. max_int64 = int64_info.max
  151. max_int64_index = max_int64 // int64_info.dtype.itemsize
  152. assert_raises(ValueError, random.multivariate_hypergeometric,
  153. [max_int64_index - 100, 101], 5, 1, 'count')
  154. @pytest.mark.parametrize('method', ['count', 'marginals'])
  155. def test_edge_cases(self, method):
  156. # Set the seed, but in fact, all the results in this test are
  157. # deterministic, so we don't really need this.
  158. random = Generator(MT19937(self.seed))
  159. x = random.multivariate_hypergeometric([0, 0, 0], 0, method=method)
  160. assert_array_equal(x, [0, 0, 0])
  161. x = random.multivariate_hypergeometric([], 0, method=method)
  162. assert_array_equal(x, [])
  163. x = random.multivariate_hypergeometric([], 0, size=1, method=method)
  164. assert_array_equal(x, np.empty((1, 0), dtype=np.int64))
  165. x = random.multivariate_hypergeometric([1, 2, 3], 0, method=method)
  166. assert_array_equal(x, [0, 0, 0])
  167. x = random.multivariate_hypergeometric([9, 0, 0], 3, method=method)
  168. assert_array_equal(x, [3, 0, 0])
  169. colors = [1, 1, 0, 1, 1]
  170. x = random.multivariate_hypergeometric(colors, sum(colors),
  171. method=method)
  172. assert_array_equal(x, colors)
  173. x = random.multivariate_hypergeometric([3, 4, 5], 12, size=3,
  174. method=method)
  175. assert_array_equal(x, [[3, 4, 5]]*3)
  176. # Cases for nsample:
  177. # nsample < 10
  178. # 10 <= nsample < colors.sum()/2
  179. # colors.sum()/2 < nsample < colors.sum() - 10
  180. # colors.sum() - 10 < nsample < colors.sum()
  181. @pytest.mark.parametrize('nsample', [8, 25, 45, 55])
  182. @pytest.mark.parametrize('method', ['count', 'marginals'])
  183. @pytest.mark.parametrize('size', [5, (2, 3), 150000])
  184. def test_typical_cases(self, nsample, method, size):
  185. random = Generator(MT19937(self.seed))
  186. colors = np.array([10, 5, 20, 25])
  187. sample = random.multivariate_hypergeometric(colors, nsample, size,
  188. method=method)
  189. if isinstance(size, int):
  190. expected_shape = (size,) + colors.shape
  191. else:
  192. expected_shape = size + colors.shape
  193. assert_equal(sample.shape, expected_shape)
  194. assert_((sample >= 0).all())
  195. assert_((sample <= colors).all())
  196. assert_array_equal(sample.sum(axis=-1),
  197. np.full(size, fill_value=nsample, dtype=int))
  198. if isinstance(size, int) and size >= 100000:
  199. # This sample is large enough to compare its mean to
  200. # the expected values.
  201. assert_allclose(sample.mean(axis=0),
  202. nsample * colors / colors.sum(),
  203. rtol=1e-3, atol=0.005)
  204. def test_repeatability1(self):
  205. random = Generator(MT19937(self.seed))
  206. sample = random.multivariate_hypergeometric([3, 4, 5], 5, size=5,
  207. method='count')
  208. expected = np.array([[2, 1, 2],
  209. [2, 1, 2],
  210. [1, 1, 3],
  211. [2, 0, 3],
  212. [2, 1, 2]])
  213. assert_array_equal(sample, expected)
  214. def test_repeatability2(self):
  215. random = Generator(MT19937(self.seed))
  216. sample = random.multivariate_hypergeometric([20, 30, 50], 50,
  217. size=5,
  218. method='marginals')
  219. expected = np.array([[ 9, 17, 24],
  220. [ 7, 13, 30],
  221. [ 9, 15, 26],
  222. [ 9, 17, 24],
  223. [12, 14, 24]])
  224. assert_array_equal(sample, expected)
  225. def test_repeatability3(self):
  226. random = Generator(MT19937(self.seed))
  227. sample = random.multivariate_hypergeometric([20, 30, 50], 12,
  228. size=5,
  229. method='marginals')
  230. expected = np.array([[2, 3, 7],
  231. [5, 3, 4],
  232. [2, 5, 5],
  233. [5, 3, 4],
  234. [1, 5, 6]])
  235. assert_array_equal(sample, expected)
  236. class TestSetState:
  237. def setup(self):
  238. self.seed = 1234567890
  239. self.rg = Generator(MT19937(self.seed))
  240. self.bit_generator = self.rg.bit_generator
  241. self.state = self.bit_generator.state
  242. self.legacy_state = (self.state['bit_generator'],
  243. self.state['state']['key'],
  244. self.state['state']['pos'])
  245. def test_gaussian_reset(self):
  246. # Make sure the cached every-other-Gaussian is reset.
  247. old = self.rg.standard_normal(size=3)
  248. self.bit_generator.state = self.state
  249. new = self.rg.standard_normal(size=3)
  250. assert_(np.all(old == new))
  251. def test_gaussian_reset_in_media_res(self):
  252. # When the state is saved with a cached Gaussian, make sure the
  253. # cached Gaussian is restored.
  254. self.rg.standard_normal()
  255. state = self.bit_generator.state
  256. old = self.rg.standard_normal(size=3)
  257. self.bit_generator.state = state
  258. new = self.rg.standard_normal(size=3)
  259. assert_(np.all(old == new))
  260. def test_negative_binomial(self):
  261. # Ensure that the negative binomial results take floating point
  262. # arguments without truncation.
  263. self.rg.negative_binomial(0.5, 0.5)
  264. class TestIntegers:
  265. rfunc = random.integers
  266. # valid integer/boolean types
  267. itype = [bool, np.int8, np.uint8, np.int16, np.uint16,
  268. np.int32, np.uint32, np.int64, np.uint64]
  269. def test_unsupported_type(self, endpoint):
  270. assert_raises(TypeError, self.rfunc, 1, endpoint=endpoint, dtype=float)
  271. def test_bounds_checking(self, endpoint):
  272. for dt in self.itype:
  273. lbnd = 0 if dt is bool else np.iinfo(dt).min
  274. ubnd = 2 if dt is bool else np.iinfo(dt).max + 1
  275. ubnd = ubnd - 1 if endpoint else ubnd
  276. assert_raises(ValueError, self.rfunc, lbnd - 1, ubnd,
  277. endpoint=endpoint, dtype=dt)
  278. assert_raises(ValueError, self.rfunc, lbnd, ubnd + 1,
  279. endpoint=endpoint, dtype=dt)
  280. assert_raises(ValueError, self.rfunc, ubnd, lbnd,
  281. endpoint=endpoint, dtype=dt)
  282. assert_raises(ValueError, self.rfunc, 1, 0, endpoint=endpoint,
  283. dtype=dt)
  284. assert_raises(ValueError, self.rfunc, [lbnd - 1], ubnd,
  285. endpoint=endpoint, dtype=dt)
  286. assert_raises(ValueError, self.rfunc, [lbnd], [ubnd + 1],
  287. endpoint=endpoint, dtype=dt)
  288. assert_raises(ValueError, self.rfunc, [ubnd], [lbnd],
  289. endpoint=endpoint, dtype=dt)
  290. assert_raises(ValueError, self.rfunc, 1, [0],
  291. endpoint=endpoint, dtype=dt)
  292. def test_bounds_checking_array(self, endpoint):
  293. for dt in self.itype:
  294. lbnd = 0 if dt is bool else np.iinfo(dt).min
  295. ubnd = 2 if dt is bool else np.iinfo(dt).max + (not endpoint)
  296. assert_raises(ValueError, self.rfunc, [lbnd - 1] * 2, [ubnd] * 2,
  297. endpoint=endpoint, dtype=dt)
  298. assert_raises(ValueError, self.rfunc, [lbnd] * 2,
  299. [ubnd + 1] * 2, endpoint=endpoint, dtype=dt)
  300. assert_raises(ValueError, self.rfunc, ubnd, [lbnd] * 2,
  301. endpoint=endpoint, dtype=dt)
  302. assert_raises(ValueError, self.rfunc, [1] * 2, 0,
  303. endpoint=endpoint, dtype=dt)
  304. def test_rng_zero_and_extremes(self, endpoint):
  305. for dt in self.itype:
  306. lbnd = 0 if dt is bool else np.iinfo(dt).min
  307. ubnd = 2 if dt is bool else np.iinfo(dt).max + 1
  308. ubnd = ubnd - 1 if endpoint else ubnd
  309. is_open = not endpoint
  310. tgt = ubnd - 1
  311. assert_equal(self.rfunc(tgt, tgt + is_open, size=1000,
  312. endpoint=endpoint, dtype=dt), tgt)
  313. assert_equal(self.rfunc([tgt], tgt + is_open, size=1000,
  314. endpoint=endpoint, dtype=dt), tgt)
  315. tgt = lbnd
  316. assert_equal(self.rfunc(tgt, tgt + is_open, size=1000,
  317. endpoint=endpoint, dtype=dt), tgt)
  318. assert_equal(self.rfunc(tgt, [tgt + is_open], size=1000,
  319. endpoint=endpoint, dtype=dt), tgt)
  320. tgt = (lbnd + ubnd) // 2
  321. assert_equal(self.rfunc(tgt, tgt + is_open, size=1000,
  322. endpoint=endpoint, dtype=dt), tgt)
  323. assert_equal(self.rfunc([tgt], [tgt + is_open],
  324. size=1000, endpoint=endpoint, dtype=dt),
  325. tgt)
  326. def test_rng_zero_and_extremes_array(self, endpoint):
  327. size = 1000
  328. for dt in self.itype:
  329. lbnd = 0 if dt is bool else np.iinfo(dt).min
  330. ubnd = 2 if dt is bool else np.iinfo(dt).max + 1
  331. ubnd = ubnd - 1 if endpoint else ubnd
  332. tgt = ubnd - 1
  333. assert_equal(self.rfunc([tgt], [tgt + 1],
  334. size=size, dtype=dt), tgt)
  335. assert_equal(self.rfunc(
  336. [tgt] * size, [tgt + 1] * size, dtype=dt), tgt)
  337. assert_equal(self.rfunc(
  338. [tgt] * size, [tgt + 1] * size, size=size, dtype=dt), tgt)
  339. tgt = lbnd
  340. assert_equal(self.rfunc([tgt], [tgt + 1],
  341. size=size, dtype=dt), tgt)
  342. assert_equal(self.rfunc(
  343. [tgt] * size, [tgt + 1] * size, dtype=dt), tgt)
  344. assert_equal(self.rfunc(
  345. [tgt] * size, [tgt + 1] * size, size=size, dtype=dt), tgt)
  346. tgt = (lbnd + ubnd) // 2
  347. assert_equal(self.rfunc([tgt], [tgt + 1],
  348. size=size, dtype=dt), tgt)
  349. assert_equal(self.rfunc(
  350. [tgt] * size, [tgt + 1] * size, dtype=dt), tgt)
  351. assert_equal(self.rfunc(
  352. [tgt] * size, [tgt + 1] * size, size=size, dtype=dt), tgt)
  353. def test_full_range(self, endpoint):
  354. # Test for ticket #1690
  355. for dt in self.itype:
  356. lbnd = 0 if dt is bool else np.iinfo(dt).min
  357. ubnd = 2 if dt is bool else np.iinfo(dt).max + 1
  358. ubnd = ubnd - 1 if endpoint else ubnd
  359. try:
  360. self.rfunc(lbnd, ubnd, endpoint=endpoint, dtype=dt)
  361. except Exception as e:
  362. raise AssertionError("No error should have been raised, "
  363. "but one was with the following "
  364. "message:\n\n%s" % str(e))
  365. def test_full_range_array(self, endpoint):
  366. # Test for ticket #1690
  367. for dt in self.itype:
  368. lbnd = 0 if dt is bool else np.iinfo(dt).min
  369. ubnd = 2 if dt is bool else np.iinfo(dt).max + 1
  370. ubnd = ubnd - 1 if endpoint else ubnd
  371. try:
  372. self.rfunc([lbnd] * 2, [ubnd], endpoint=endpoint, dtype=dt)
  373. except Exception as e:
  374. raise AssertionError("No error should have been raised, "
  375. "but one was with the following "
  376. "message:\n\n%s" % str(e))
  377. def test_in_bounds_fuzz(self, endpoint):
  378. # Don't use fixed seed
  379. random = Generator(MT19937())
  380. for dt in self.itype[1:]:
  381. for ubnd in [4, 8, 16]:
  382. vals = self.rfunc(2, ubnd - endpoint, size=2 ** 16,
  383. endpoint=endpoint, dtype=dt)
  384. assert_(vals.max() < ubnd)
  385. assert_(vals.min() >= 2)
  386. vals = self.rfunc(0, 2 - endpoint, size=2 ** 16, endpoint=endpoint,
  387. dtype=bool)
  388. assert_(vals.max() < 2)
  389. assert_(vals.min() >= 0)
  390. def test_scalar_array_equiv(self, endpoint):
  391. for dt in self.itype:
  392. lbnd = 0 if dt is bool else np.iinfo(dt).min
  393. ubnd = 2 if dt is bool else np.iinfo(dt).max + 1
  394. ubnd = ubnd - 1 if endpoint else ubnd
  395. size = 1000
  396. random = Generator(MT19937(1234))
  397. scalar = random.integers(lbnd, ubnd, size=size, endpoint=endpoint,
  398. dtype=dt)
  399. random = Generator(MT19937(1234))
  400. scalar_array = random.integers([lbnd], [ubnd], size=size,
  401. endpoint=endpoint, dtype=dt)
  402. random = Generator(MT19937(1234))
  403. array = random.integers([lbnd] * size, [ubnd] *
  404. size, size=size, endpoint=endpoint, dtype=dt)
  405. assert_array_equal(scalar, scalar_array)
  406. assert_array_equal(scalar, array)
  407. def test_repeatability(self, endpoint):
  408. # We use a sha256 hash of generated sequences of 1000 samples
  409. # in the range [0, 6) for all but bool, where the range
  410. # is [0, 2). Hashes are for little endian numbers.
  411. tgt = {'bool': '053594a9b82d656f967c54869bc6970aa0358cf94ad469c81478459c6a90eee3',
  412. 'int16': '54de9072b6ee9ff7f20b58329556a46a447a8a29d67db51201bf88baa6e4e5d4',
  413. 'int32': 'd3a0d5efb04542b25ac712e50d21f39ac30f312a5052e9bbb1ad3baa791ac84b',
  414. 'int64': '14e224389ac4580bfbdccb5697d6190b496f91227cf67df60989de3d546389b1',
  415. 'int8': '0e203226ff3fbbd1580f15da4621e5f7164d0d8d6b51696dd42d004ece2cbec1',
  416. 'uint16': '54de9072b6ee9ff7f20b58329556a46a447a8a29d67db51201bf88baa6e4e5d4',
  417. 'uint32': 'd3a0d5efb04542b25ac712e50d21f39ac30f312a5052e9bbb1ad3baa791ac84b',
  418. 'uint64': '14e224389ac4580bfbdccb5697d6190b496f91227cf67df60989de3d546389b1',
  419. 'uint8': '0e203226ff3fbbd1580f15da4621e5f7164d0d8d6b51696dd42d004ece2cbec1'}
  420. for dt in self.itype[1:]:
  421. random = Generator(MT19937(1234))
  422. # view as little endian for hash
  423. if sys.byteorder == 'little':
  424. val = random.integers(0, 6 - endpoint, size=1000, endpoint=endpoint,
  425. dtype=dt)
  426. else:
  427. val = random.integers(0, 6 - endpoint, size=1000, endpoint=endpoint,
  428. dtype=dt).byteswap()
  429. res = hashlib.sha256(val).hexdigest()
  430. assert_(tgt[np.dtype(dt).name] == res)
  431. # bools do not depend on endianness
  432. random = Generator(MT19937(1234))
  433. val = random.integers(0, 2 - endpoint, size=1000, endpoint=endpoint,
  434. dtype=bool).view(np.int8)
  435. res = hashlib.sha256(val).hexdigest()
  436. assert_(tgt[np.dtype(bool).name] == res)
  437. def test_repeatability_broadcasting(self, endpoint):
  438. for dt in self.itype:
  439. lbnd = 0 if dt in (bool, np.bool_) else np.iinfo(dt).min
  440. ubnd = 2 if dt in (bool, np.bool_) else np.iinfo(dt).max + 1
  441. ubnd = ubnd - 1 if endpoint else ubnd
  442. # view as little endian for hash
  443. random = Generator(MT19937(1234))
  444. val = random.integers(lbnd, ubnd, size=1000, endpoint=endpoint,
  445. dtype=dt)
  446. random = Generator(MT19937(1234))
  447. val_bc = random.integers([lbnd] * 1000, ubnd, endpoint=endpoint,
  448. dtype=dt)
  449. assert_array_equal(val, val_bc)
  450. random = Generator(MT19937(1234))
  451. val_bc = random.integers([lbnd] * 1000, [ubnd] * 1000,
  452. endpoint=endpoint, dtype=dt)
  453. assert_array_equal(val, val_bc)
  454. @pytest.mark.parametrize(
  455. 'bound, expected',
  456. [(2**32 - 1, np.array([517043486, 1364798665, 1733884389, 1353720612,
  457. 3769704066, 1170797179, 4108474671])),
  458. (2**32, np.array([517043487, 1364798666, 1733884390, 1353720613,
  459. 3769704067, 1170797180, 4108474672])),
  460. (2**32 + 1, np.array([517043487, 1733884390, 3769704068, 4108474673,
  461. 1831631863, 1215661561, 3869512430]))]
  462. )
  463. def test_repeatability_32bit_boundary(self, bound, expected):
  464. for size in [None, len(expected)]:
  465. random = Generator(MT19937(1234))
  466. x = random.integers(bound, size=size)
  467. assert_equal(x, expected if size is not None else expected[0])
  468. def test_repeatability_32bit_boundary_broadcasting(self):
  469. desired = np.array([[[1622936284, 3620788691, 1659384060],
  470. [1417365545, 760222891, 1909653332],
  471. [3788118662, 660249498, 4092002593]],
  472. [[3625610153, 2979601262, 3844162757],
  473. [ 685800658, 120261497, 2694012896],
  474. [1207779440, 1586594375, 3854335050]],
  475. [[3004074748, 2310761796, 3012642217],
  476. [2067714190, 2786677879, 1363865881],
  477. [ 791663441, 1867303284, 2169727960]],
  478. [[1939603804, 1250951100, 298950036],
  479. [1040128489, 3791912209, 3317053765],
  480. [3155528714, 61360675, 2305155588]],
  481. [[ 817688762, 1335621943, 3288952434],
  482. [1770890872, 1102951817, 1957607470],
  483. [3099996017, 798043451, 48334215]]])
  484. for size in [None, (5, 3, 3)]:
  485. random = Generator(MT19937(12345))
  486. x = random.integers([[-1], [0], [1]],
  487. [2**32 - 1, 2**32, 2**32 + 1],
  488. size=size)
  489. assert_array_equal(x, desired if size is not None else desired[0])
  490. def test_int64_uint64_broadcast_exceptions(self, endpoint):
  491. configs = {np.uint64: ((0, 2**65), (-1, 2**62), (10, 9), (0, 0)),
  492. np.int64: ((0, 2**64), (-(2**64), 2**62), (10, 9), (0, 0),
  493. (-2**63-1, -2**63-1))}
  494. for dtype in configs:
  495. for config in configs[dtype]:
  496. low, high = config
  497. high = high - endpoint
  498. low_a = np.array([[low]*10])
  499. high_a = np.array([high] * 10)
  500. assert_raises(ValueError, random.integers, low, high,
  501. endpoint=endpoint, dtype=dtype)
  502. assert_raises(ValueError, random.integers, low_a, high,
  503. endpoint=endpoint, dtype=dtype)
  504. assert_raises(ValueError, random.integers, low, high_a,
  505. endpoint=endpoint, dtype=dtype)
  506. assert_raises(ValueError, random.integers, low_a, high_a,
  507. endpoint=endpoint, dtype=dtype)
  508. low_o = np.array([[low]*10], dtype=object)
  509. high_o = np.array([high] * 10, dtype=object)
  510. assert_raises(ValueError, random.integers, low_o, high,
  511. endpoint=endpoint, dtype=dtype)
  512. assert_raises(ValueError, random.integers, low, high_o,
  513. endpoint=endpoint, dtype=dtype)
  514. assert_raises(ValueError, random.integers, low_o, high_o,
  515. endpoint=endpoint, dtype=dtype)
  516. def test_int64_uint64_corner_case(self, endpoint):
  517. # When stored in Numpy arrays, `lbnd` is casted
  518. # as np.int64, and `ubnd` is casted as np.uint64.
  519. # Checking whether `lbnd` >= `ubnd` used to be
  520. # done solely via direct comparison, which is incorrect
  521. # because when Numpy tries to compare both numbers,
  522. # it casts both to np.float64 because there is
  523. # no integer superset of np.int64 and np.uint64. However,
  524. # `ubnd` is too large to be represented in np.float64,
  525. # causing it be round down to np.iinfo(np.int64).max,
  526. # leading to a ValueError because `lbnd` now equals
  527. # the new `ubnd`.
  528. dt = np.int64
  529. tgt = np.iinfo(np.int64).max
  530. lbnd = np.int64(np.iinfo(np.int64).max)
  531. ubnd = np.uint64(np.iinfo(np.int64).max + 1 - endpoint)
  532. # None of these function calls should
  533. # generate a ValueError now.
  534. actual = random.integers(lbnd, ubnd, endpoint=endpoint, dtype=dt)
  535. assert_equal(actual, tgt)
  536. def test_respect_dtype_singleton(self, endpoint):
  537. # See gh-7203
  538. for dt in self.itype:
  539. lbnd = 0 if dt is bool else np.iinfo(dt).min
  540. ubnd = 2 if dt is bool else np.iinfo(dt).max + 1
  541. ubnd = ubnd - 1 if endpoint else ubnd
  542. dt = np.bool_ if dt is bool else dt
  543. sample = self.rfunc(lbnd, ubnd, endpoint=endpoint, dtype=dt)
  544. assert_equal(sample.dtype, dt)
  545. for dt in (bool, int, np.compat.long):
  546. lbnd = 0 if dt is bool else np.iinfo(dt).min
  547. ubnd = 2 if dt is bool else np.iinfo(dt).max + 1
  548. ubnd = ubnd - 1 if endpoint else ubnd
  549. # gh-7284: Ensure that we get Python data types
  550. sample = self.rfunc(lbnd, ubnd, endpoint=endpoint, dtype=dt)
  551. assert not hasattr(sample, 'dtype')
  552. assert_equal(type(sample), dt)
  553. def test_respect_dtype_array(self, endpoint):
  554. # See gh-7203
  555. for dt in self.itype:
  556. lbnd = 0 if dt is bool else np.iinfo(dt).min
  557. ubnd = 2 if dt is bool else np.iinfo(dt).max + 1
  558. ubnd = ubnd - 1 if endpoint else ubnd
  559. dt = np.bool_ if dt is bool else dt
  560. sample = self.rfunc([lbnd], [ubnd], endpoint=endpoint, dtype=dt)
  561. assert_equal(sample.dtype, dt)
  562. sample = self.rfunc([lbnd] * 2, [ubnd] * 2, endpoint=endpoint,
  563. dtype=dt)
  564. assert_equal(sample.dtype, dt)
  565. def test_zero_size(self, endpoint):
  566. # See gh-7203
  567. for dt in self.itype:
  568. sample = self.rfunc(0, 0, (3, 0, 4), endpoint=endpoint, dtype=dt)
  569. assert sample.shape == (3, 0, 4)
  570. assert sample.dtype == dt
  571. assert self.rfunc(0, -10, 0, endpoint=endpoint,
  572. dtype=dt).shape == (0,)
  573. assert_equal(random.integers(0, 0, size=(3, 0, 4)).shape,
  574. (3, 0, 4))
  575. assert_equal(random.integers(0, -10, size=0).shape, (0,))
  576. assert_equal(random.integers(10, 10, size=0).shape, (0,))
  577. def test_error_byteorder(self):
  578. other_byteord_dt = '<i4' if sys.byteorder == 'big' else '>i4'
  579. with pytest.raises(ValueError):
  580. random.integers(0, 200, size=10, dtype=other_byteord_dt)
  581. # chi2max is the maximum acceptable chi-squared value.
  582. @pytest.mark.slow
  583. @pytest.mark.parametrize('sample_size,high,dtype,chi2max',
  584. [(5000000, 5, np.int8, 125.0), # p-value ~4.6e-25
  585. (5000000, 7, np.uint8, 150.0), # p-value ~7.7e-30
  586. (10000000, 2500, np.int16, 3300.0), # p-value ~3.0e-25
  587. (50000000, 5000, np.uint16, 6500.0), # p-value ~3.5e-25
  588. ])
  589. def test_integers_small_dtype_chisquared(self, sample_size, high,
  590. dtype, chi2max):
  591. # Regression test for gh-14774.
  592. samples = random.integers(high, size=sample_size, dtype=dtype)
  593. values, counts = np.unique(samples, return_counts=True)
  594. expected = sample_size / high
  595. chi2 = ((counts - expected)**2 / expected).sum()
  596. assert chi2 < chi2max
  597. class TestRandomDist:
  598. # Make sure the random distribution returns the correct value for a
  599. # given seed
  600. def setup(self):
  601. self.seed = 1234567890
  602. def test_integers(self):
  603. random = Generator(MT19937(self.seed))
  604. actual = random.integers(-99, 99, size=(3, 2))
  605. desired = np.array([[-80, -56], [41, 37], [-83, -16]])
  606. assert_array_equal(actual, desired)
  607. def test_integers_masked(self):
  608. # Test masked rejection sampling algorithm to generate array of
  609. # uint32 in an interval.
  610. random = Generator(MT19937(self.seed))
  611. actual = random.integers(0, 99, size=(3, 2), dtype=np.uint32)
  612. desired = np.array([[9, 21], [70, 68], [8, 41]], dtype=np.uint32)
  613. assert_array_equal(actual, desired)
  614. def test_integers_closed(self):
  615. random = Generator(MT19937(self.seed))
  616. actual = random.integers(-99, 99, size=(3, 2), endpoint=True)
  617. desired = np.array([[-80, -56], [ 41, 38], [-83, -15]])
  618. assert_array_equal(actual, desired)
  619. def test_integers_max_int(self):
  620. # Tests whether integers with closed=True can generate the
  621. # maximum allowed Python int that can be converted
  622. # into a C long. Previous implementations of this
  623. # method have thrown an OverflowError when attempting
  624. # to generate this integer.
  625. actual = random.integers(np.iinfo('l').max, np.iinfo('l').max,
  626. endpoint=True)
  627. desired = np.iinfo('l').max
  628. assert_equal(actual, desired)
  629. def test_random(self):
  630. random = Generator(MT19937(self.seed))
  631. actual = random.random((3, 2))
  632. desired = np.array([[0.096999199829214, 0.707517457682192],
  633. [0.084364834598269, 0.767731206553125],
  634. [0.665069021359413, 0.715487190596693]])
  635. assert_array_almost_equal(actual, desired, decimal=15)
  636. random = Generator(MT19937(self.seed))
  637. actual = random.random()
  638. assert_array_almost_equal(actual, desired[0, 0], decimal=15)
  639. def test_random_float(self):
  640. random = Generator(MT19937(self.seed))
  641. actual = random.random((3, 2))
  642. desired = np.array([[0.0969992 , 0.70751746],
  643. [0.08436483, 0.76773121],
  644. [0.66506902, 0.71548719]])
  645. assert_array_almost_equal(actual, desired, decimal=7)
  646. def test_random_float_scalar(self):
  647. random = Generator(MT19937(self.seed))
  648. actual = random.random(dtype=np.float32)
  649. desired = 0.0969992
  650. assert_array_almost_equal(actual, desired, decimal=7)
  651. def test_random_unsupported_type(self):
  652. assert_raises(TypeError, random.random, dtype='int32')
  653. def test_choice_uniform_replace(self):
  654. random = Generator(MT19937(self.seed))
  655. actual = random.choice(4, 4)
  656. desired = np.array([0, 0, 2, 2], dtype=np.int64)
  657. assert_array_equal(actual, desired)
  658. def test_choice_nonuniform_replace(self):
  659. random = Generator(MT19937(self.seed))
  660. actual = random.choice(4, 4, p=[0.4, 0.4, 0.1, 0.1])
  661. desired = np.array([0, 1, 0, 1], dtype=np.int64)
  662. assert_array_equal(actual, desired)
  663. def test_choice_uniform_noreplace(self):
  664. random = Generator(MT19937(self.seed))
  665. actual = random.choice(4, 3, replace=False)
  666. desired = np.array([2, 0, 3], dtype=np.int64)
  667. assert_array_equal(actual, desired)
  668. actual = random.choice(4, 4, replace=False, shuffle=False)
  669. desired = np.arange(4, dtype=np.int64)
  670. assert_array_equal(actual, desired)
  671. def test_choice_nonuniform_noreplace(self):
  672. random = Generator(MT19937(self.seed))
  673. actual = random.choice(4, 3, replace=False, p=[0.1, 0.3, 0.5, 0.1])
  674. desired = np.array([0, 2, 3], dtype=np.int64)
  675. assert_array_equal(actual, desired)
  676. def test_choice_noninteger(self):
  677. random = Generator(MT19937(self.seed))
  678. actual = random.choice(['a', 'b', 'c', 'd'], 4)
  679. desired = np.array(['a', 'a', 'c', 'c'])
  680. assert_array_equal(actual, desired)
  681. def test_choice_multidimensional_default_axis(self):
  682. random = Generator(MT19937(self.seed))
  683. actual = random.choice([[0, 1], [2, 3], [4, 5], [6, 7]], 3)
  684. desired = np.array([[0, 1], [0, 1], [4, 5]])
  685. assert_array_equal(actual, desired)
  686. def test_choice_multidimensional_custom_axis(self):
  687. random = Generator(MT19937(self.seed))
  688. actual = random.choice([[0, 1], [2, 3], [4, 5], [6, 7]], 1, axis=1)
  689. desired = np.array([[0], [2], [4], [6]])
  690. assert_array_equal(actual, desired)
  691. def test_choice_exceptions(self):
  692. sample = random.choice
  693. assert_raises(ValueError, sample, -1, 3)
  694. assert_raises(ValueError, sample, 3., 3)
  695. assert_raises(ValueError, sample, [], 3)
  696. assert_raises(ValueError, sample, [1, 2, 3, 4], 3,
  697. p=[[0.25, 0.25], [0.25, 0.25]])
  698. assert_raises(ValueError, sample, [1, 2], 3, p=[0.4, 0.4, 0.2])
  699. assert_raises(ValueError, sample, [1, 2], 3, p=[1.1, -0.1])
  700. assert_raises(ValueError, sample, [1, 2], 3, p=[0.4, 0.4])
  701. assert_raises(ValueError, sample, [1, 2, 3], 4, replace=False)
  702. # gh-13087
  703. assert_raises(ValueError, sample, [1, 2, 3], -2, replace=False)
  704. assert_raises(ValueError, sample, [1, 2, 3], (-1,), replace=False)
  705. assert_raises(ValueError, sample, [1, 2, 3], (-1, 1), replace=False)
  706. assert_raises(ValueError, sample, [1, 2, 3], 2,
  707. replace=False, p=[1, 0, 0])
  708. def test_choice_return_shape(self):
  709. p = [0.1, 0.9]
  710. # Check scalar
  711. assert_(np.isscalar(random.choice(2, replace=True)))
  712. assert_(np.isscalar(random.choice(2, replace=False)))
  713. assert_(np.isscalar(random.choice(2, replace=True, p=p)))
  714. assert_(np.isscalar(random.choice(2, replace=False, p=p)))
  715. assert_(np.isscalar(random.choice([1, 2], replace=True)))
  716. assert_(random.choice([None], replace=True) is None)
  717. a = np.array([1, 2])
  718. arr = np.empty(1, dtype=object)
  719. arr[0] = a
  720. assert_(random.choice(arr, replace=True) is a)
  721. # Check 0-d array
  722. s = tuple()
  723. assert_(not np.isscalar(random.choice(2, s, replace=True)))
  724. assert_(not np.isscalar(random.choice(2, s, replace=False)))
  725. assert_(not np.isscalar(random.choice(2, s, replace=True, p=p)))
  726. assert_(not np.isscalar(random.choice(2, s, replace=False, p=p)))
  727. assert_(not np.isscalar(random.choice([1, 2], s, replace=True)))
  728. assert_(random.choice([None], s, replace=True).ndim == 0)
  729. a = np.array([1, 2])
  730. arr = np.empty(1, dtype=object)
  731. arr[0] = a
  732. assert_(random.choice(arr, s, replace=True).item() is a)
  733. # Check multi dimensional array
  734. s = (2, 3)
  735. p = [0.1, 0.1, 0.1, 0.1, 0.4, 0.2]
  736. assert_equal(random.choice(6, s, replace=True).shape, s)
  737. assert_equal(random.choice(6, s, replace=False).shape, s)
  738. assert_equal(random.choice(6, s, replace=True, p=p).shape, s)
  739. assert_equal(random.choice(6, s, replace=False, p=p).shape, s)
  740. assert_equal(random.choice(np.arange(6), s, replace=True).shape, s)
  741. # Check zero-size
  742. assert_equal(random.integers(0, 0, size=(3, 0, 4)).shape, (3, 0, 4))
  743. assert_equal(random.integers(0, -10, size=0).shape, (0,))
  744. assert_equal(random.integers(10, 10, size=0).shape, (0,))
  745. assert_equal(random.choice(0, size=0).shape, (0,))
  746. assert_equal(random.choice([], size=(0,)).shape, (0,))
  747. assert_equal(random.choice(['a', 'b'], size=(3, 0, 4)).shape,
  748. (3, 0, 4))
  749. assert_raises(ValueError, random.choice, [], 10)
  750. def test_choice_nan_probabilities(self):
  751. a = np.array([42, 1, 2])
  752. p = [None, None, None]
  753. assert_raises(ValueError, random.choice, a, p=p)
  754. def test_choice_p_non_contiguous(self):
  755. p = np.ones(10) / 5
  756. p[1::2] = 3.0
  757. random = Generator(MT19937(self.seed))
  758. non_contig = random.choice(5, 3, p=p[::2])
  759. random = Generator(MT19937(self.seed))
  760. contig = random.choice(5, 3, p=np.ascontiguousarray(p[::2]))
  761. assert_array_equal(non_contig, contig)
  762. def test_choice_return_type(self):
  763. # gh 9867
  764. p = np.ones(4) / 4.
  765. actual = random.choice(4, 2)
  766. assert actual.dtype == np.int64
  767. actual = random.choice(4, 2, replace=False)
  768. assert actual.dtype == np.int64
  769. actual = random.choice(4, 2, p=p)
  770. assert actual.dtype == np.int64
  771. actual = random.choice(4, 2, p=p, replace=False)
  772. assert actual.dtype == np.int64
  773. def test_choice_large_sample(self):
  774. choice_hash = '4266599d12bfcfb815213303432341c06b4349f5455890446578877bb322e222'
  775. random = Generator(MT19937(self.seed))
  776. actual = random.choice(10000, 5000, replace=False)
  777. if sys.byteorder != 'little':
  778. actual = actual.byteswap()
  779. res = hashlib.sha256(actual.view(np.int8)).hexdigest()
  780. assert_(choice_hash == res)
  781. def test_bytes(self):
  782. random = Generator(MT19937(self.seed))
  783. actual = random.bytes(10)
  784. desired = b'\x86\xf0\xd4\x18\xe1\x81\t8%\xdd'
  785. assert_equal(actual, desired)
  786. def test_shuffle(self):
  787. # Test lists, arrays (of various dtypes), and multidimensional versions
  788. # of both, c-contiguous or not:
  789. for conv in [lambda x: np.array([]),
  790. lambda x: x,
  791. lambda x: np.asarray(x).astype(np.int8),
  792. lambda x: np.asarray(x).astype(np.float32),
  793. lambda x: np.asarray(x).astype(np.complex64),
  794. lambda x: np.asarray(x).astype(object),
  795. lambda x: [(i, i) for i in x],
  796. lambda x: np.asarray([[i, i] for i in x]),
  797. lambda x: np.vstack([x, x]).T,
  798. # gh-11442
  799. lambda x: (np.asarray([(i, i) for i in x],
  800. [("a", int), ("b", int)])
  801. .view(np.recarray)),
  802. # gh-4270
  803. lambda x: np.asarray([(i, i) for i in x],
  804. [("a", object, (1,)),
  805. ("b", np.int32, (1,))])]:
  806. random = Generator(MT19937(self.seed))
  807. alist = conv([1, 2, 3, 4, 5, 6, 7, 8, 9, 0])
  808. random.shuffle(alist)
  809. actual = alist
  810. desired = conv([4, 1, 9, 8, 0, 5, 3, 6, 2, 7])
  811. assert_array_equal(actual, desired)
  812. def test_shuffle_custom_axis(self):
  813. random = Generator(MT19937(self.seed))
  814. actual = np.arange(16).reshape((4, 4))
  815. random.shuffle(actual, axis=1)
  816. desired = np.array([[ 0, 3, 1, 2],
  817. [ 4, 7, 5, 6],
  818. [ 8, 11, 9, 10],
  819. [12, 15, 13, 14]])
  820. assert_array_equal(actual, desired)
  821. random = Generator(MT19937(self.seed))
  822. actual = np.arange(16).reshape((4, 4))
  823. random.shuffle(actual, axis=-1)
  824. assert_array_equal(actual, desired)
  825. def test_shuffle_custom_axis_empty(self):
  826. random = Generator(MT19937(self.seed))
  827. desired = np.array([]).reshape((0, 6))
  828. for axis in (0, 1):
  829. actual = np.array([]).reshape((0, 6))
  830. random.shuffle(actual, axis=axis)
  831. assert_array_equal(actual, desired)
  832. def test_shuffle_axis_nonsquare(self):
  833. y1 = np.arange(20).reshape(2, 10)
  834. y2 = y1.copy()
  835. random = Generator(MT19937(self.seed))
  836. random.shuffle(y1, axis=1)
  837. random = Generator(MT19937(self.seed))
  838. random.shuffle(y2.T)
  839. assert_array_equal(y1, y2)
  840. def test_shuffle_masked(self):
  841. # gh-3263
  842. a = np.ma.masked_values(np.reshape(range(20), (5, 4)) % 3 - 1, -1)
  843. b = np.ma.masked_values(np.arange(20) % 3 - 1, -1)
  844. a_orig = a.copy()
  845. b_orig = b.copy()
  846. for i in range(50):
  847. random.shuffle(a)
  848. assert_equal(
  849. sorted(a.data[~a.mask]), sorted(a_orig.data[~a_orig.mask]))
  850. random.shuffle(b)
  851. assert_equal(
  852. sorted(b.data[~b.mask]), sorted(b_orig.data[~b_orig.mask]))
  853. def test_shuffle_exceptions(self):
  854. random = Generator(MT19937(self.seed))
  855. arr = np.arange(10)
  856. assert_raises(np.AxisError, random.shuffle, arr, 1)
  857. arr = np.arange(9).reshape((3, 3))
  858. assert_raises(np.AxisError, random.shuffle, arr, 3)
  859. assert_raises(TypeError, random.shuffle, arr, slice(1, 2, None))
  860. arr = [[1, 2, 3], [4, 5, 6]]
  861. assert_raises(NotImplementedError, random.shuffle, arr, 1)
  862. arr = np.array(3)
  863. assert_raises(TypeError, random.shuffle, arr)
  864. arr = np.ones((3, 2))
  865. assert_raises(np.AxisError, random.shuffle, arr, 2)
  866. def test_permutation(self):
  867. random = Generator(MT19937(self.seed))
  868. alist = [1, 2, 3, 4, 5, 6, 7, 8, 9, 0]
  869. actual = random.permutation(alist)
  870. desired = [4, 1, 9, 8, 0, 5, 3, 6, 2, 7]
  871. assert_array_equal(actual, desired)
  872. random = Generator(MT19937(self.seed))
  873. arr_2d = np.atleast_2d([1, 2, 3, 4, 5, 6, 7, 8, 9, 0]).T
  874. actual = random.permutation(arr_2d)
  875. assert_array_equal(actual, np.atleast_2d(desired).T)
  876. bad_x_str = "abcd"
  877. assert_raises(np.AxisError, random.permutation, bad_x_str)
  878. bad_x_float = 1.2
  879. assert_raises(np.AxisError, random.permutation, bad_x_float)
  880. random = Generator(MT19937(self.seed))
  881. integer_val = 10
  882. desired = [3, 0, 8, 7, 9, 4, 2, 5, 1, 6]
  883. actual = random.permutation(integer_val)
  884. assert_array_equal(actual, desired)
  885. def test_permutation_custom_axis(self):
  886. a = np.arange(16).reshape((4, 4))
  887. desired = np.array([[ 0, 3, 1, 2],
  888. [ 4, 7, 5, 6],
  889. [ 8, 11, 9, 10],
  890. [12, 15, 13, 14]])
  891. random = Generator(MT19937(self.seed))
  892. actual = random.permutation(a, axis=1)
  893. assert_array_equal(actual, desired)
  894. random = Generator(MT19937(self.seed))
  895. actual = random.permutation(a, axis=-1)
  896. assert_array_equal(actual, desired)
  897. def test_permutation_exceptions(self):
  898. random = Generator(MT19937(self.seed))
  899. arr = np.arange(10)
  900. assert_raises(np.AxisError, random.permutation, arr, 1)
  901. arr = np.arange(9).reshape((3, 3))
  902. assert_raises(np.AxisError, random.permutation, arr, 3)
  903. assert_raises(TypeError, random.permutation, arr, slice(1, 2, None))
  904. @pytest.mark.parametrize("dtype", [int, object])
  905. @pytest.mark.parametrize("axis, expected",
  906. [(None, np.array([[3, 7, 0, 9, 10, 11],
  907. [8, 4, 2, 5, 1, 6]])),
  908. (0, np.array([[6, 1, 2, 9, 10, 11],
  909. [0, 7, 8, 3, 4, 5]])),
  910. (1, np.array([[ 5, 3, 4, 0, 2, 1],
  911. [11, 9, 10, 6, 8, 7]]))])
  912. def test_permuted(self, dtype, axis, expected):
  913. random = Generator(MT19937(self.seed))
  914. x = np.arange(12).reshape(2, 6).astype(dtype)
  915. random.permuted(x, axis=axis, out=x)
  916. assert_array_equal(x, expected)
  917. random = Generator(MT19937(self.seed))
  918. x = np.arange(12).reshape(2, 6).astype(dtype)
  919. y = random.permuted(x, axis=axis)
  920. assert y.dtype == dtype
  921. assert_array_equal(y, expected)
  922. def test_permuted_with_strides(self):
  923. random = Generator(MT19937(self.seed))
  924. x0 = np.arange(22).reshape(2, 11)
  925. x1 = x0.copy()
  926. x = x0[:, ::3]
  927. y = random.permuted(x, axis=1, out=x)
  928. expected = np.array([[0, 9, 3, 6],
  929. [14, 20, 11, 17]])
  930. assert_array_equal(y, expected)
  931. x1[:, ::3] = expected
  932. # Verify that the original x0 was modified in-place as expected.
  933. assert_array_equal(x1, x0)
  934. def test_permuted_empty(self):
  935. y = random.permuted([])
  936. assert_array_equal(y, [])
  937. @pytest.mark.parametrize('outshape', [(2, 3), 5])
  938. def test_permuted_out_with_wrong_shape(self, outshape):
  939. a = np.array([1, 2, 3])
  940. out = np.zeros(outshape, dtype=a.dtype)
  941. with pytest.raises(ValueError, match='same shape'):
  942. random.permuted(a, out=out)
  943. def test_permuted_out_with_wrong_type(self):
  944. out = np.zeros((3, 5), dtype=np.int32)
  945. x = np.ones((3, 5))
  946. with pytest.raises(TypeError, match='Cannot cast'):
  947. random.permuted(x, axis=1, out=out)
  948. def test_beta(self):
  949. random = Generator(MT19937(self.seed))
  950. actual = random.beta(.1, .9, size=(3, 2))
  951. desired = np.array(
  952. [[1.083029353267698e-10, 2.449965303168024e-11],
  953. [2.397085162969853e-02, 3.590779671820755e-08],
  954. [2.830254190078299e-04, 1.744709918330393e-01]])
  955. assert_array_almost_equal(actual, desired, decimal=15)
  956. def test_binomial(self):
  957. random = Generator(MT19937(self.seed))
  958. actual = random.binomial(100.123, .456, size=(3, 2))
  959. desired = np.array([[42, 41],
  960. [42, 48],
  961. [44, 50]])
  962. assert_array_equal(actual, desired)
  963. random = Generator(MT19937(self.seed))
  964. actual = random.binomial(100.123, .456)
  965. desired = 42
  966. assert_array_equal(actual, desired)
  967. def test_chisquare(self):
  968. random = Generator(MT19937(self.seed))
  969. actual = random.chisquare(50, size=(3, 2))
  970. desired = np.array([[32.9850547060149, 39.0219480493301],
  971. [56.2006134779419, 57.3474165711485],
  972. [55.4243733880198, 55.4209797925213]])
  973. assert_array_almost_equal(actual, desired, decimal=13)
  974. def test_dirichlet(self):
  975. random = Generator(MT19937(self.seed))
  976. alpha = np.array([51.72840233779265162, 39.74494232180943953])
  977. actual = random.dirichlet(alpha, size=(3, 2))
  978. desired = np.array([[[0.5439892869558927, 0.45601071304410745],
  979. [0.5588917345860708, 0.4411082654139292 ]],
  980. [[0.5632074165063435, 0.43679258349365657],
  981. [0.54862581112627, 0.45137418887373015]],
  982. [[0.49961831357047226, 0.5003816864295278 ],
  983. [0.52374806183482, 0.47625193816517997]]])
  984. assert_array_almost_equal(actual, desired, decimal=15)
  985. bad_alpha = np.array([5.4e-01, -1.0e-16])
  986. assert_raises(ValueError, random.dirichlet, bad_alpha)
  987. random = Generator(MT19937(self.seed))
  988. alpha = np.array([51.72840233779265162, 39.74494232180943953])
  989. actual = random.dirichlet(alpha)
  990. assert_array_almost_equal(actual, desired[0, 0], decimal=15)
  991. def test_dirichlet_size(self):
  992. # gh-3173
  993. p = np.array([51.72840233779265162, 39.74494232180943953])
  994. assert_equal(random.dirichlet(p, np.uint32(1)).shape, (1, 2))
  995. assert_equal(random.dirichlet(p, np.uint32(1)).shape, (1, 2))
  996. assert_equal(random.dirichlet(p, np.uint32(1)).shape, (1, 2))
  997. assert_equal(random.dirichlet(p, [2, 2]).shape, (2, 2, 2))
  998. assert_equal(random.dirichlet(p, (2, 2)).shape, (2, 2, 2))
  999. assert_equal(random.dirichlet(p, np.array((2, 2))).shape, (2, 2, 2))
  1000. assert_raises(TypeError, random.dirichlet, p, float(1))
  1001. def test_dirichlet_bad_alpha(self):
  1002. # gh-2089
  1003. alpha = np.array([5.4e-01, -1.0e-16])
  1004. assert_raises(ValueError, random.dirichlet, alpha)
  1005. # gh-15876
  1006. assert_raises(ValueError, random.dirichlet, [[5, 1]])
  1007. assert_raises(ValueError, random.dirichlet, [[5], [1]])
  1008. assert_raises(ValueError, random.dirichlet, [[[5], [1]], [[1], [5]]])
  1009. assert_raises(ValueError, random.dirichlet, np.array([[5, 1], [1, 5]]))
  1010. def test_dirichlet_alpha_non_contiguous(self):
  1011. a = np.array([51.72840233779265162, -1.0, 39.74494232180943953])
  1012. alpha = a[::2]
  1013. random = Generator(MT19937(self.seed))
  1014. non_contig = random.dirichlet(alpha, size=(3, 2))
  1015. random = Generator(MT19937(self.seed))
  1016. contig = random.dirichlet(np.ascontiguousarray(alpha),
  1017. size=(3, 2))
  1018. assert_array_almost_equal(non_contig, contig)
  1019. def test_dirichlet_small_alpha(self):
  1020. eps = 1.0e-9 # 1.0e-10 -> runtime x 10; 1e-11 -> runtime x 200, etc.
  1021. alpha = eps * np.array([1., 1.0e-3])
  1022. random = Generator(MT19937(self.seed))
  1023. actual = random.dirichlet(alpha, size=(3, 2))
  1024. expected = np.array([
  1025. [[1., 0.],
  1026. [1., 0.]],
  1027. [[1., 0.],
  1028. [1., 0.]],
  1029. [[1., 0.],
  1030. [1., 0.]]
  1031. ])
  1032. assert_array_almost_equal(actual, expected, decimal=15)
  1033. @pytest.mark.slow
  1034. def test_dirichlet_moderately_small_alpha(self):
  1035. # Use alpha.max() < 0.1 to trigger stick breaking code path
  1036. alpha = np.array([0.02, 0.04, 0.03])
  1037. exact_mean = alpha / alpha.sum()
  1038. random = Generator(MT19937(self.seed))
  1039. sample = random.dirichlet(alpha, size=20000000)
  1040. sample_mean = sample.mean(axis=0)
  1041. assert_allclose(sample_mean, exact_mean, rtol=1e-3)
  1042. def test_exponential(self):
  1043. random = Generator(MT19937(self.seed))
  1044. actual = random.exponential(1.1234, size=(3, 2))
  1045. desired = np.array([[0.098845481066258, 1.560752510746964],
  1046. [0.075730916041636, 1.769098974710777],
  1047. [1.488602544592235, 2.49684815275751 ]])
  1048. assert_array_almost_equal(actual, desired, decimal=15)
  1049. def test_exponential_0(self):
  1050. assert_equal(random.exponential(scale=0), 0)
  1051. assert_raises(ValueError, random.exponential, scale=-0.)
  1052. def test_f(self):
  1053. random = Generator(MT19937(self.seed))
  1054. actual = random.f(12, 77, size=(3, 2))
  1055. desired = np.array([[0.461720027077085, 1.100441958872451],
  1056. [1.100337455217484, 0.91421736740018 ],
  1057. [0.500811891303113, 0.826802454552058]])
  1058. assert_array_almost_equal(actual, desired, decimal=15)
  1059. def test_gamma(self):
  1060. random = Generator(MT19937(self.seed))
  1061. actual = random.gamma(5, 3, size=(3, 2))
  1062. desired = np.array([[ 5.03850858902096, 7.9228656732049 ],
  1063. [18.73983605132985, 19.57961681699238],
  1064. [18.17897755150825, 18.17653912505234]])
  1065. assert_array_almost_equal(actual, desired, decimal=14)
  1066. def test_gamma_0(self):
  1067. assert_equal(random.gamma(shape=0, scale=0), 0)
  1068. assert_raises(ValueError, random.gamma, shape=-0., scale=-0.)
  1069. def test_geometric(self):
  1070. random = Generator(MT19937(self.seed))
  1071. actual = random.geometric(.123456789, size=(3, 2))
  1072. desired = np.array([[1, 11],
  1073. [1, 12],
  1074. [11, 17]])
  1075. assert_array_equal(actual, desired)
  1076. def test_geometric_exceptions(self):
  1077. assert_raises(ValueError, random.geometric, 1.1)
  1078. assert_raises(ValueError, random.geometric, [1.1] * 10)
  1079. assert_raises(ValueError, random.geometric, -0.1)
  1080. assert_raises(ValueError, random.geometric, [-0.1] * 10)
  1081. with np.errstate(invalid='ignore'):
  1082. assert_raises(ValueError, random.geometric, np.nan)
  1083. assert_raises(ValueError, random.geometric, [np.nan] * 10)
  1084. def test_gumbel(self):
  1085. random = Generator(MT19937(self.seed))
  1086. actual = random.gumbel(loc=.123456789, scale=2.0, size=(3, 2))
  1087. desired = np.array([[ 4.688397515056245, -0.289514845417841],
  1088. [ 4.981176042584683, -0.633224272589149],
  1089. [-0.055915275687488, -0.333962478257953]])
  1090. assert_array_almost_equal(actual, desired, decimal=15)
  1091. def test_gumbel_0(self):
  1092. assert_equal(random.gumbel(scale=0), 0)
  1093. assert_raises(ValueError, random.gumbel, scale=-0.)
  1094. def test_hypergeometric(self):
  1095. random = Generator(MT19937(self.seed))
  1096. actual = random.hypergeometric(10.1, 5.5, 14, size=(3, 2))
  1097. desired = np.array([[ 9, 9],
  1098. [ 9, 9],
  1099. [10, 9]])
  1100. assert_array_equal(actual, desired)
  1101. # Test nbad = 0
  1102. actual = random.hypergeometric(5, 0, 3, size=4)
  1103. desired = np.array([3, 3, 3, 3])
  1104. assert_array_equal(actual, desired)
  1105. actual = random.hypergeometric(15, 0, 12, size=4)
  1106. desired = np.array([12, 12, 12, 12])
  1107. assert_array_equal(actual, desired)
  1108. # Test ngood = 0
  1109. actual = random.hypergeometric(0, 5, 3, size=4)
  1110. desired = np.array([0, 0, 0, 0])
  1111. assert_array_equal(actual, desired)
  1112. actual = random.hypergeometric(0, 15, 12, size=4)
  1113. desired = np.array([0, 0, 0, 0])
  1114. assert_array_equal(actual, desired)
  1115. def test_laplace(self):
  1116. random = Generator(MT19937(self.seed))
  1117. actual = random.laplace(loc=.123456789, scale=2.0, size=(3, 2))
  1118. desired = np.array([[-3.156353949272393, 1.195863024830054],
  1119. [-3.435458081645966, 1.656882398925444],
  1120. [ 0.924824032467446, 1.251116432209336]])
  1121. assert_array_almost_equal(actual, desired, decimal=15)
  1122. def test_laplace_0(self):
  1123. assert_equal(random.laplace(scale=0), 0)
  1124. assert_raises(ValueError, random.laplace, scale=-0.)
  1125. def test_logistic(self):
  1126. random = Generator(MT19937(self.seed))
  1127. actual = random.logistic(loc=.123456789, scale=2.0, size=(3, 2))
  1128. desired = np.array([[-4.338584631510999, 1.890171436749954],
  1129. [-4.64547787337966 , 2.514545562919217],
  1130. [ 1.495389489198666, 1.967827627577474]])
  1131. assert_array_almost_equal(actual, desired, decimal=15)
  1132. def test_lognormal(self):
  1133. random = Generator(MT19937(self.seed))
  1134. actual = random.lognormal(mean=.123456789, sigma=2.0, size=(3, 2))
  1135. desired = np.array([[ 0.0268252166335, 13.9534486483053],
  1136. [ 0.1204014788936, 2.2422077497792],
  1137. [ 4.2484199496128, 12.0093343977523]])
  1138. assert_array_almost_equal(actual, desired, decimal=13)
  1139. def test_lognormal_0(self):
  1140. assert_equal(random.lognormal(sigma=0), 1)
  1141. assert_raises(ValueError, random.lognormal, sigma=-0.)
  1142. def test_logseries(self):
  1143. random = Generator(MT19937(self.seed))
  1144. actual = random.logseries(p=.923456789, size=(3, 2))
  1145. desired = np.array([[14, 17],
  1146. [3, 18],
  1147. [5, 1]])
  1148. assert_array_equal(actual, desired)
  1149. def test_logseries_exceptions(self):
  1150. with np.errstate(invalid='ignore'):
  1151. assert_raises(ValueError, random.logseries, np.nan)
  1152. assert_raises(ValueError, random.logseries, [np.nan] * 10)
  1153. def test_multinomial(self):
  1154. random = Generator(MT19937(self.seed))
  1155. actual = random.multinomial(20, [1 / 6.] * 6, size=(3, 2))
  1156. desired = np.array([[[1, 5, 1, 6, 4, 3],
  1157. [4, 2, 6, 2, 4, 2]],
  1158. [[5, 3, 2, 6, 3, 1],
  1159. [4, 4, 0, 2, 3, 7]],
  1160. [[6, 3, 1, 5, 3, 2],
  1161. [5, 5, 3, 1, 2, 4]]])
  1162. assert_array_equal(actual, desired)
  1163. @pytest.mark.parametrize("method", ["svd", "eigh", "cholesky"])
  1164. def test_multivariate_normal(self, method):
  1165. random = Generator(MT19937(self.seed))
  1166. mean = (.123456789, 10)
  1167. cov = [[1, 0], [0, 1]]
  1168. size = (3, 2)
  1169. actual = random.multivariate_normal(mean, cov, size, method=method)
  1170. desired = np.array([[[-1.747478062846581, 11.25613495182354 ],
  1171. [-0.9967333370066214, 10.342002097029821 ]],
  1172. [[ 0.7850019631242964, 11.181113712443013 ],
  1173. [ 0.8901349653255224, 8.873825399642492 ]],
  1174. [[ 0.7130260107430003, 9.551628690083056 ],
  1175. [ 0.7127098726541128, 11.991709234143173 ]]])
  1176. assert_array_almost_equal(actual, desired, decimal=15)
  1177. # Check for default size, was raising deprecation warning
  1178. actual = random.multivariate_normal(mean, cov, method=method)
  1179. desired = np.array([0.233278563284287, 9.424140804347195])
  1180. assert_array_almost_equal(actual, desired, decimal=15)
  1181. # Check that non symmetric covariance input raises exception when
  1182. # check_valid='raises' if using default svd method.
  1183. mean = [0, 0]
  1184. cov = [[1, 2], [1, 2]]
  1185. assert_raises(ValueError, random.multivariate_normal, mean, cov,
  1186. check_valid='raise')
  1187. # Check that non positive-semidefinite covariance warns with
  1188. # RuntimeWarning
  1189. cov = [[1, 2], [2, 1]]
  1190. assert_warns(RuntimeWarning, random.multivariate_normal, mean, cov)
  1191. assert_warns(RuntimeWarning, random.multivariate_normal, mean, cov,
  1192. method='eigh')
  1193. assert_raises(LinAlgError, random.multivariate_normal, mean, cov,
  1194. method='cholesky')
  1195. # and that it doesn't warn with RuntimeWarning check_valid='ignore'
  1196. assert_no_warnings(random.multivariate_normal, mean, cov,
  1197. check_valid='ignore')
  1198. # and that it raises with RuntimeWarning check_valid='raises'
  1199. assert_raises(ValueError, random.multivariate_normal, mean, cov,
  1200. check_valid='raise')
  1201. assert_raises(ValueError, random.multivariate_normal, mean, cov,
  1202. check_valid='raise', method='eigh')
  1203. # check degenerate samples from singular covariance matrix
  1204. cov = [[1, 1], [1, 1]]
  1205. if method in ('svd', 'eigh'):
  1206. samples = random.multivariate_normal(mean, cov, size=(3, 2),
  1207. method=method)
  1208. assert_array_almost_equal(samples[..., 0], samples[..., 1],
  1209. decimal=6)
  1210. else:
  1211. assert_raises(LinAlgError, random.multivariate_normal, mean, cov,
  1212. method='cholesky')
  1213. cov = np.array([[1, 0.1], [0.1, 1]], dtype=np.float32)
  1214. with suppress_warnings() as sup:
  1215. random.multivariate_normal(mean, cov, method=method)
  1216. w = sup.record(RuntimeWarning)
  1217. assert len(w) == 0
  1218. mu = np.zeros(2)
  1219. cov = np.eye(2)
  1220. assert_raises(ValueError, random.multivariate_normal, mean, cov,
  1221. check_valid='other')
  1222. assert_raises(ValueError, random.multivariate_normal,
  1223. np.zeros((2, 1, 1)), cov)
  1224. assert_raises(ValueError, random.multivariate_normal,
  1225. mu, np.empty((3, 2)))
  1226. assert_raises(ValueError, random.multivariate_normal,
  1227. mu, np.eye(3))
  1228. @pytest.mark.parametrize("method", ["svd", "eigh", "cholesky"])
  1229. def test_multivariate_normal_basic_stats(self, method):
  1230. random = Generator(MT19937(self.seed))
  1231. n_s = 1000
  1232. mean = np.array([1, 2])
  1233. cov = np.array([[2, 1], [1, 2]])
  1234. s = random.multivariate_normal(mean, cov, size=(n_s,), method=method)
  1235. s_center = s - mean
  1236. cov_emp = (s_center.T @ s_center) / (n_s - 1)
  1237. # these are pretty loose and are only designed to detect major errors
  1238. assert np.all(np.abs(s_center.mean(-2)) < 0.1)
  1239. assert np.all(np.abs(cov_emp - cov) < 0.2)
  1240. def test_negative_binomial(self):
  1241. random = Generator(MT19937(self.seed))
  1242. actual = random.negative_binomial(n=100, p=.12345, size=(3, 2))
  1243. desired = np.array([[543, 727],
  1244. [775, 760],
  1245. [600, 674]])
  1246. assert_array_equal(actual, desired)
  1247. def test_negative_binomial_exceptions(self):
  1248. with np.errstate(invalid='ignore'):
  1249. assert_raises(ValueError, random.negative_binomial, 100, np.nan)
  1250. assert_raises(ValueError, random.negative_binomial, 100,
  1251. [np.nan] * 10)
  1252. def test_negative_binomial_p0_exception(self):
  1253. # Verify that p=0 raises an exception.
  1254. with assert_raises(ValueError):
  1255. x = random.negative_binomial(1, 0)
  1256. def test_noncentral_chisquare(self):
  1257. random = Generator(MT19937(self.seed))
  1258. actual = random.noncentral_chisquare(df=5, nonc=5, size=(3, 2))
  1259. desired = np.array([[ 1.70561552362133, 15.97378184942111],
  1260. [13.71483425173724, 20.17859633310629],
  1261. [11.3615477156643 , 3.67891108738029]])
  1262. assert_array_almost_equal(actual, desired, decimal=14)
  1263. actual = random.noncentral_chisquare(df=.5, nonc=.2, size=(3, 2))
  1264. desired = np.array([[9.41427665607629e-04, 1.70473157518850e-04],
  1265. [1.14554372041263e+00, 1.38187755933435e-03],
  1266. [1.90659181905387e+00, 1.21772577941822e+00]])
  1267. assert_array_almost_equal(actual, desired, decimal=14)
  1268. random = Generator(MT19937(self.seed))
  1269. actual = random.noncentral_chisquare(df=5, nonc=0, size=(3, 2))
  1270. desired = np.array([[0.82947954590419, 1.80139670767078],
  1271. [6.58720057417794, 7.00491463609814],
  1272. [6.31101879073157, 6.30982307753005]])
  1273. assert_array_almost_equal(actual, desired, decimal=14)
  1274. def test_noncentral_f(self):
  1275. random = Generator(MT19937(self.seed))
  1276. actual = random.noncentral_f(dfnum=5, dfden=2, nonc=1,
  1277. size=(3, 2))
  1278. desired = np.array([[0.060310671139 , 0.23866058175939],
  1279. [0.86860246709073, 0.2668510459738 ],
  1280. [0.23375780078364, 1.88922102885943]])
  1281. assert_array_almost_equal(actual, desired, decimal=14)
  1282. def test_noncentral_f_nan(self):
  1283. random = Generator(MT19937(self.seed))
  1284. actual = random.noncentral_f(dfnum=5, dfden=2, nonc=np.nan)
  1285. assert np.isnan(actual)
  1286. def test_normal(self):
  1287. random = Generator(MT19937(self.seed))
  1288. actual = random.normal(loc=.123456789, scale=2.0, size=(3, 2))
  1289. desired = np.array([[-3.618412914693162, 2.635726692647081],
  1290. [-2.116923463013243, 0.807460983059643],
  1291. [ 1.446547137248593, 2.485684213886024]])
  1292. assert_array_almost_equal(actual, desired, decimal=15)
  1293. def test_normal_0(self):
  1294. assert_equal(random.normal(scale=0), 0)
  1295. assert_raises(ValueError, random.normal, scale=-0.)
  1296. def test_pareto(self):
  1297. random = Generator(MT19937(self.seed))
  1298. actual = random.pareto(a=.123456789, size=(3, 2))
  1299. desired = np.array([[1.0394926776069018e+00, 7.7142534343505773e+04],
  1300. [7.2640150889064703e-01, 3.4650454783825594e+05],
  1301. [4.5852344481994740e+04, 6.5851383009539105e+07]])
  1302. # For some reason on 32-bit x86 Ubuntu 12.10 the [1, 0] entry in this
  1303. # matrix differs by 24 nulps. Discussion:
  1304. # https://mail.python.org/pipermail/numpy-discussion/2012-September/063801.html
  1305. # Consensus is that this is probably some gcc quirk that affects
  1306. # rounding but not in any important way, so we just use a looser
  1307. # tolerance on this test:
  1308. np.testing.assert_array_almost_equal_nulp(actual, desired, nulp=30)
  1309. def test_poisson(self):
  1310. random = Generator(MT19937(self.seed))
  1311. actual = random.poisson(lam=.123456789, size=(3, 2))
  1312. desired = np.array([[0, 0],
  1313. [0, 0],
  1314. [0, 0]])
  1315. assert_array_equal(actual, desired)
  1316. def test_poisson_exceptions(self):
  1317. lambig = np.iinfo('int64').max
  1318. lamneg = -1
  1319. assert_raises(ValueError, random.poisson, lamneg)
  1320. assert_raises(ValueError, random.poisson, [lamneg] * 10)
  1321. assert_raises(ValueError, random.poisson, lambig)
  1322. assert_raises(ValueError, random.poisson, [lambig] * 10)
  1323. with np.errstate(invalid='ignore'):
  1324. assert_raises(ValueError, random.poisson, np.nan)
  1325. assert_raises(ValueError, random.poisson, [np.nan] * 10)
  1326. def test_power(self):
  1327. random = Generator(MT19937(self.seed))
  1328. actual = random.power(a=.123456789, size=(3, 2))
  1329. desired = np.array([[1.977857368842754e-09, 9.806792196620341e-02],
  1330. [2.482442984543471e-10, 1.527108843266079e-01],
  1331. [8.188283434244285e-02, 3.950547209346948e-01]])
  1332. assert_array_almost_equal(actual, desired, decimal=15)
  1333. def test_rayleigh(self):
  1334. random = Generator(MT19937(self.seed))
  1335. actual = random.rayleigh(scale=10, size=(3, 2))
  1336. desired = np.array([[4.19494429102666, 16.66920198906598],
  1337. [3.67184544902662, 17.74695521962917],
  1338. [16.27935397855501, 21.08355560691792]])
  1339. assert_array_almost_equal(actual, desired, decimal=14)
  1340. def test_rayleigh_0(self):
  1341. assert_equal(random.rayleigh(scale=0), 0)
  1342. assert_raises(ValueError, random.rayleigh, scale=-0.)
  1343. def test_standard_cauchy(self):
  1344. random = Generator(MT19937(self.seed))
  1345. actual = random.standard_cauchy(size=(3, 2))
  1346. desired = np.array([[-1.489437778266206, -3.275389641569784],
  1347. [ 0.560102864910406, -0.680780916282552],
  1348. [-1.314912905226277, 0.295852965660225]])
  1349. assert_array_almost_equal(actual, desired, decimal=15)
  1350. def test_standard_exponential(self):
  1351. random = Generator(MT19937(self.seed))
  1352. actual = random.standard_exponential(size=(3, 2), method='inv')
  1353. desired = np.array([[0.102031839440643, 1.229350298474972],
  1354. [0.088137284693098, 1.459859985522667],
  1355. [1.093830802293668, 1.256977002164613]])
  1356. assert_array_almost_equal(actual, desired, decimal=15)
  1357. def test_standard_expoential_type_error(self):
  1358. assert_raises(TypeError, random.standard_exponential, dtype=np.int32)
  1359. def test_standard_gamma(self):
  1360. random = Generator(MT19937(self.seed))
  1361. actual = random.standard_gamma(shape=3, size=(3, 2))
  1362. desired = np.array([[0.62970724056362, 1.22379851271008],
  1363. [3.899412530884 , 4.12479964250139],
  1364. [3.74994102464584, 3.74929307690815]])
  1365. assert_array_almost_equal(actual, desired, decimal=14)
  1366. def test_standard_gammma_scalar_float(self):
  1367. random = Generator(MT19937(self.seed))
  1368. actual = random.standard_gamma(3, dtype=np.float32)
  1369. desired = 2.9242148399353027
  1370. assert_array_almost_equal(actual, desired, decimal=6)
  1371. def test_standard_gamma_float(self):
  1372. random = Generator(MT19937(self.seed))
  1373. actual = random.standard_gamma(shape=3, size=(3, 2))
  1374. desired = np.array([[0.62971, 1.2238 ],
  1375. [3.89941, 4.1248 ],
  1376. [3.74994, 3.74929]])
  1377. assert_array_almost_equal(actual, desired, decimal=5)
  1378. def test_standard_gammma_float_out(self):
  1379. actual = np.zeros((3, 2), dtype=np.float32)
  1380. random = Generator(MT19937(self.seed))
  1381. random.standard_gamma(10.0, out=actual, dtype=np.float32)
  1382. desired = np.array([[10.14987, 7.87012],
  1383. [ 9.46284, 12.56832],
  1384. [13.82495, 7.81533]], dtype=np.float32)
  1385. assert_array_almost_equal(actual, desired, decimal=5)
  1386. random = Generator(MT19937(self.seed))
  1387. random.standard_gamma(10.0, out=actual, size=(3, 2), dtype=np.float32)
  1388. assert_array_almost_equal(actual, desired, decimal=5)
  1389. def test_standard_gamma_unknown_type(self):
  1390. assert_raises(TypeError, random.standard_gamma, 1.,
  1391. dtype='int32')
  1392. def test_out_size_mismatch(self):
  1393. out = np.zeros(10)
  1394. assert_raises(ValueError, random.standard_gamma, 10.0, size=20,
  1395. out=out)
  1396. assert_raises(ValueError, random.standard_gamma, 10.0, size=(10, 1),
  1397. out=out)
  1398. def test_standard_gamma_0(self):
  1399. assert_equal(random.standard_gamma(shape=0), 0)
  1400. assert_raises(ValueError, random.standard_gamma, shape=-0.)
  1401. def test_standard_normal(self):
  1402. random = Generator(MT19937(self.seed))
  1403. actual = random.standard_normal(size=(3, 2))
  1404. desired = np.array([[-1.870934851846581, 1.25613495182354 ],
  1405. [-1.120190126006621, 0.342002097029821],
  1406. [ 0.661545174124296, 1.181113712443012]])
  1407. assert_array_almost_equal(actual, desired, decimal=15)
  1408. def test_standard_normal_unsupported_type(self):
  1409. assert_raises(TypeError, random.standard_normal, dtype=np.int32)
  1410. def test_standard_t(self):
  1411. random = Generator(MT19937(self.seed))
  1412. actual = random.standard_t(df=10, size=(3, 2))
  1413. desired = np.array([[-1.484666193042647, 0.30597891831161 ],
  1414. [ 1.056684299648085, -0.407312602088507],
  1415. [ 0.130704414281157, -2.038053410490321]])
  1416. assert_array_almost_equal(actual, desired, decimal=15)
  1417. def test_triangular(self):
  1418. random = Generator(MT19937(self.seed))
  1419. actual = random.triangular(left=5.12, mode=10.23, right=20.34,
  1420. size=(3, 2))
  1421. desired = np.array([[ 7.86664070590917, 13.6313848513185 ],
  1422. [ 7.68152445215983, 14.36169131136546],
  1423. [13.16105603911429, 13.72341621856971]])
  1424. assert_array_almost_equal(actual, desired, decimal=14)
  1425. def test_uniform(self):
  1426. random = Generator(MT19937(self.seed))
  1427. actual = random.uniform(low=1.23, high=10.54, size=(3, 2))
  1428. desired = np.array([[2.13306255040998 , 7.816987531021207],
  1429. [2.015436610109887, 8.377577533009589],
  1430. [7.421792588856135, 7.891185744455209]])
  1431. assert_array_almost_equal(actual, desired, decimal=15)
  1432. def test_uniform_range_bounds(self):
  1433. fmin = np.finfo('float').min
  1434. fmax = np.finfo('float').max
  1435. func = random.uniform
  1436. assert_raises(OverflowError, func, -np.inf, 0)
  1437. assert_raises(OverflowError, func, 0, np.inf)
  1438. assert_raises(OverflowError, func, fmin, fmax)
  1439. assert_raises(OverflowError, func, [-np.inf], [0])
  1440. assert_raises(OverflowError, func, [0], [np.inf])
  1441. # (fmax / 1e17) - fmin is within range, so this should not throw
  1442. # account for i386 extended precision DBL_MAX / 1e17 + DBL_MAX >
  1443. # DBL_MAX by increasing fmin a bit
  1444. random.uniform(low=np.nextafter(fmin, 1), high=fmax / 1e17)
  1445. def test_uniform_zero_range(self):
  1446. func = random.uniform
  1447. result = func(1.5, 1.5)
  1448. assert_allclose(result, 1.5)
  1449. result = func([0.0, np.pi], [0.0, np.pi])
  1450. assert_allclose(result, [0.0, np.pi])
  1451. result = func([[2145.12], [2145.12]], [2145.12, 2145.12])
  1452. assert_allclose(result, 2145.12 + np.zeros((2, 2)))
  1453. def test_uniform_neg_range(self):
  1454. func = random.uniform
  1455. assert_raises(ValueError, func, 2, 1)
  1456. assert_raises(ValueError, func, [1, 2], [1, 1])
  1457. assert_raises(ValueError, func, [[0, 1],[2, 3]], 2)
  1458. def test_scalar_exception_propagation(self):
  1459. # Tests that exceptions are correctly propagated in distributions
  1460. # when called with objects that throw exceptions when converted to
  1461. # scalars.
  1462. #
  1463. # Regression test for gh: 8865
  1464. class ThrowingFloat(np.ndarray):
  1465. def __float__(self):
  1466. raise TypeError
  1467. throwing_float = np.array(1.0).view(ThrowingFloat)
  1468. assert_raises(TypeError, random.uniform, throwing_float,
  1469. throwing_float)
  1470. class ThrowingInteger(np.ndarray):
  1471. def __int__(self):
  1472. raise TypeError
  1473. throwing_int = np.array(1).view(ThrowingInteger)
  1474. assert_raises(TypeError, random.hypergeometric, throwing_int, 1, 1)
  1475. def test_vonmises(self):
  1476. random = Generator(MT19937(self.seed))
  1477. actual = random.vonmises(mu=1.23, kappa=1.54, size=(3, 2))
  1478. desired = np.array([[ 1.107972248690106, 2.841536476232361],
  1479. [ 1.832602376042457, 1.945511926976032],
  1480. [-0.260147475776542, 2.058047492231698]])
  1481. assert_array_almost_equal(actual, desired, decimal=15)
  1482. def test_vonmises_small(self):
  1483. # check infinite loop, gh-4720
  1484. random = Generator(MT19937(self.seed))
  1485. r = random.vonmises(mu=0., kappa=1.1e-8, size=10**6)
  1486. assert_(np.isfinite(r).all())
  1487. def test_vonmises_nan(self):
  1488. random = Generator(MT19937(self.seed))
  1489. r = random.vonmises(mu=0., kappa=np.nan)
  1490. assert_(np.isnan(r))
  1491. @pytest.mark.parametrize("kappa", [1e4, 1e15])
  1492. def test_vonmises_large_kappa(self, kappa):
  1493. random = Generator(MT19937(self.seed))
  1494. rs = RandomState(random.bit_generator)
  1495. state = random.bit_generator.state
  1496. random_state_vals = rs.vonmises(0, kappa, size=10)
  1497. random.bit_generator.state = state
  1498. gen_vals = random.vonmises(0, kappa, size=10)
  1499. if kappa < 1e6:
  1500. assert_allclose(random_state_vals, gen_vals)
  1501. else:
  1502. assert np.all(random_state_vals != gen_vals)
  1503. @pytest.mark.parametrize("mu", [-7., -np.pi, -3.1, np.pi, 3.2])
  1504. @pytest.mark.parametrize("kappa", [1e-9, 1e-6, 1, 1e3, 1e15])
  1505. def test_vonmises_large_kappa_range(self, mu, kappa):
  1506. r = random.vonmises(mu, kappa, 50)
  1507. assert_(np.all(r > -np.pi) and np.all(r <= np.pi))
  1508. def test_wald(self):
  1509. random = Generator(MT19937(self.seed))
  1510. actual = random.wald(mean=1.23, scale=1.54, size=(3, 2))
  1511. desired = np.array([[0.26871721804551, 3.2233942732115 ],
  1512. [2.20328374987066, 2.40958405189353],
  1513. [2.07093587449261, 0.73073890064369]])
  1514. assert_array_almost_equal(actual, desired, decimal=14)
  1515. def test_weibull(self):
  1516. random = Generator(MT19937(self.seed))
  1517. actual = random.weibull(a=1.23, size=(3, 2))
  1518. desired = np.array([[0.138613914769468, 1.306463419753191],
  1519. [0.111623365934763, 1.446570494646721],
  1520. [1.257145775276011, 1.914247725027957]])
  1521. assert_array_almost_equal(actual, desired, decimal=15)
  1522. def test_weibull_0(self):
  1523. random = Generator(MT19937(self.seed))
  1524. assert_equal(random.weibull(a=0, size=12), np.zeros(12))
  1525. assert_raises(ValueError, random.weibull, a=-0.)
  1526. def test_zipf(self):
  1527. random = Generator(MT19937(self.seed))
  1528. actual = random.zipf(a=1.23, size=(3, 2))
  1529. desired = np.array([[ 1, 1],
  1530. [ 10, 867],
  1531. [354, 2]])
  1532. assert_array_equal(actual, desired)
  1533. class TestBroadcast:
  1534. # tests that functions that broadcast behave
  1535. # correctly when presented with non-scalar arguments
  1536. def setup(self):
  1537. self.seed = 123456789
  1538. def test_uniform(self):
  1539. random = Generator(MT19937(self.seed))
  1540. low = [0]
  1541. high = [1]
  1542. uniform = random.uniform
  1543. desired = np.array([0.16693771389729, 0.19635129550675, 0.75563050964095])
  1544. random = Generator(MT19937(self.seed))
  1545. actual = random.uniform(low * 3, high)
  1546. assert_array_almost_equal(actual, desired, decimal=14)
  1547. random = Generator(MT19937(self.seed))
  1548. actual = random.uniform(low, high * 3)
  1549. assert_array_almost_equal(actual, desired, decimal=14)
  1550. def test_normal(self):
  1551. loc = [0]
  1552. scale = [1]
  1553. bad_scale = [-1]
  1554. random = Generator(MT19937(self.seed))
  1555. desired = np.array([-0.38736406738527, 0.79594375042255, 0.0197076236097])
  1556. random = Generator(MT19937(self.seed))
  1557. actual = random.normal(loc * 3, scale)
  1558. assert_array_almost_equal(actual, desired, decimal=14)
  1559. assert_raises(ValueError, random.normal, loc * 3, bad_scale)
  1560. random = Generator(MT19937(self.seed))
  1561. normal = random.normal
  1562. actual = normal(loc, scale * 3)
  1563. assert_array_almost_equal(actual, desired, decimal=14)
  1564. assert_raises(ValueError, normal, loc, bad_scale * 3)
  1565. def test_beta(self):
  1566. a = [1]
  1567. b = [2]
  1568. bad_a = [-1]
  1569. bad_b = [-2]
  1570. desired = np.array([0.18719338682602, 0.73234824491364, 0.17928615186455])
  1571. random = Generator(MT19937(self.seed))
  1572. beta = random.beta
  1573. actual = beta(a * 3, b)
  1574. assert_array_almost_equal(actual, desired, decimal=14)
  1575. assert_raises(ValueError, beta, bad_a * 3, b)
  1576. assert_raises(ValueError, beta, a * 3, bad_b)
  1577. random = Generator(MT19937(self.seed))
  1578. actual = random.beta(a, b * 3)
  1579. assert_array_almost_equal(actual, desired, decimal=14)
  1580. def test_exponential(self):
  1581. scale = [1]
  1582. bad_scale = [-1]
  1583. desired = np.array([0.67245993212806, 0.21380495318094, 0.7177848928629])
  1584. random = Generator(MT19937(self.seed))
  1585. actual = random.exponential(scale * 3)
  1586. assert_array_almost_equal(actual, desired, decimal=14)
  1587. assert_raises(ValueError, random.exponential, bad_scale * 3)
  1588. def test_standard_gamma(self):
  1589. shape = [1]
  1590. bad_shape = [-1]
  1591. desired = np.array([0.67245993212806, 0.21380495318094, 0.7177848928629])
  1592. random = Generator(MT19937(self.seed))
  1593. std_gamma = random.standard_gamma
  1594. actual = std_gamma(shape * 3)
  1595. assert_array_almost_equal(actual, desired, decimal=14)
  1596. assert_raises(ValueError, std_gamma, bad_shape * 3)
  1597. def test_gamma(self):
  1598. shape = [1]
  1599. scale = [2]
  1600. bad_shape = [-1]
  1601. bad_scale = [-2]
  1602. desired = np.array([1.34491986425611, 0.42760990636187, 1.4355697857258])
  1603. random = Generator(MT19937(self.seed))
  1604. gamma = random.gamma
  1605. actual = gamma(shape * 3, scale)
  1606. assert_array_almost_equal(actual, desired, decimal=14)
  1607. assert_raises(ValueError, gamma, bad_shape * 3, scale)
  1608. assert_raises(ValueError, gamma, shape * 3, bad_scale)
  1609. random = Generator(MT19937(self.seed))
  1610. gamma = random.gamma
  1611. actual = gamma(shape, scale * 3)
  1612. assert_array_almost_equal(actual, desired, decimal=14)
  1613. assert_raises(ValueError, gamma, bad_shape, scale * 3)
  1614. assert_raises(ValueError, gamma, shape, bad_scale * 3)
  1615. def test_f(self):
  1616. dfnum = [1]
  1617. dfden = [2]
  1618. bad_dfnum = [-1]
  1619. bad_dfden = [-2]
  1620. desired = np.array([0.07765056244107, 7.72951397913186, 0.05786093891763])
  1621. random = Generator(MT19937(self.seed))
  1622. f = random.f
  1623. actual = f(dfnum * 3, dfden)
  1624. assert_array_almost_equal(actual, desired, decimal=14)
  1625. assert_raises(ValueError, f, bad_dfnum * 3, dfden)
  1626. assert_raises(ValueError, f, dfnum * 3, bad_dfden)
  1627. random = Generator(MT19937(self.seed))
  1628. f = random.f
  1629. actual = f(dfnum, dfden * 3)
  1630. assert_array_almost_equal(actual, desired, decimal=14)
  1631. assert_raises(ValueError, f, bad_dfnum, dfden * 3)
  1632. assert_raises(ValueError, f, dfnum, bad_dfden * 3)
  1633. def test_noncentral_f(self):
  1634. dfnum = [2]
  1635. dfden = [3]
  1636. nonc = [4]
  1637. bad_dfnum = [0]
  1638. bad_dfden = [-1]
  1639. bad_nonc = [-2]
  1640. desired = np.array([2.02434240411421, 12.91838601070124, 1.24395160354629])
  1641. random = Generator(MT19937(self.seed))
  1642. nonc_f = random.noncentral_f
  1643. actual = nonc_f(dfnum * 3, dfden, nonc)
  1644. assert_array_almost_equal(actual, desired, decimal=14)
  1645. assert np.all(np.isnan(nonc_f(dfnum, dfden, [np.nan] * 3)))
  1646. assert_raises(ValueError, nonc_f, bad_dfnum * 3, dfden, nonc)
  1647. assert_raises(ValueError, nonc_f, dfnum * 3, bad_dfden, nonc)
  1648. assert_raises(ValueError, nonc_f, dfnum * 3, dfden, bad_nonc)
  1649. random = Generator(MT19937(self.seed))
  1650. nonc_f = random.noncentral_f
  1651. actual = nonc_f(dfnum, dfden * 3, nonc)
  1652. assert_array_almost_equal(actual, desired, decimal=14)
  1653. assert_raises(ValueError, nonc_f, bad_dfnum, dfden * 3, nonc)
  1654. assert_raises(ValueError, nonc_f, dfnum, bad_dfden * 3, nonc)
  1655. assert_raises(ValueError, nonc_f, dfnum, dfden * 3, bad_nonc)
  1656. random = Generator(MT19937(self.seed))
  1657. nonc_f = random.noncentral_f
  1658. actual = nonc_f(dfnum, dfden, nonc * 3)
  1659. assert_array_almost_equal(actual, desired, decimal=14)
  1660. assert_raises(ValueError, nonc_f, bad_dfnum, dfden, nonc * 3)
  1661. assert_raises(ValueError, nonc_f, dfnum, bad_dfden, nonc * 3)
  1662. assert_raises(ValueError, nonc_f, dfnum, dfden, bad_nonc * 3)
  1663. def test_noncentral_f_small_df(self):
  1664. random = Generator(MT19937(self.seed))
  1665. desired = np.array([0.04714867120827, 0.1239390327694])
  1666. actual = random.noncentral_f(0.9, 0.9, 2, size=2)
  1667. assert_array_almost_equal(actual, desired, decimal=14)
  1668. def test_chisquare(self):
  1669. df = [1]
  1670. bad_df = [-1]
  1671. desired = np.array([0.05573640064251, 1.47220224353539, 2.9469379318589])
  1672. random = Generator(MT19937(self.seed))
  1673. actual = random.chisquare(df * 3)
  1674. assert_array_almost_equal(actual, desired, decimal=14)
  1675. assert_raises(ValueError, random.chisquare, bad_df * 3)
  1676. def test_noncentral_chisquare(self):
  1677. df = [1]
  1678. nonc = [2]
  1679. bad_df = [-1]
  1680. bad_nonc = [-2]
  1681. desired = np.array([0.07710766249436, 5.27829115110304, 0.630732147399])
  1682. random = Generator(MT19937(self.seed))
  1683. nonc_chi = random.noncentral_chisquare
  1684. actual = nonc_chi(df * 3, nonc)
  1685. assert_array_almost_equal(actual, desired, decimal=14)
  1686. assert_raises(ValueError, nonc_chi, bad_df * 3, nonc)
  1687. assert_raises(ValueError, nonc_chi, df * 3, bad_nonc)
  1688. random = Generator(MT19937(self.seed))
  1689. nonc_chi = random.noncentral_chisquare
  1690. actual = nonc_chi(df, nonc * 3)
  1691. assert_array_almost_equal(actual, desired, decimal=14)
  1692. assert_raises(ValueError, nonc_chi, bad_df, nonc * 3)
  1693. assert_raises(ValueError, nonc_chi, df, bad_nonc * 3)
  1694. def test_standard_t(self):
  1695. df = [1]
  1696. bad_df = [-1]
  1697. desired = np.array([-1.39498829447098, -1.23058658835223, 0.17207021065983])
  1698. random = Generator(MT19937(self.seed))
  1699. actual = random.standard_t(df * 3)
  1700. assert_array_almost_equal(actual, desired, decimal=14)
  1701. assert_raises(ValueError, random.standard_t, bad_df * 3)
  1702. def test_vonmises(self):
  1703. mu = [2]
  1704. kappa = [1]
  1705. bad_kappa = [-1]
  1706. desired = np.array([2.25935584988528, 2.23326261461399, -2.84152146503326])
  1707. random = Generator(MT19937(self.seed))
  1708. actual = random.vonmises(mu * 3, kappa)
  1709. assert_array_almost_equal(actual, desired, decimal=14)
  1710. assert_raises(ValueError, random.vonmises, mu * 3, bad_kappa)
  1711. random = Generator(MT19937(self.seed))
  1712. actual = random.vonmises(mu, kappa * 3)
  1713. assert_array_almost_equal(actual, desired, decimal=14)
  1714. assert_raises(ValueError, random.vonmises, mu, bad_kappa * 3)
  1715. def test_pareto(self):
  1716. a = [1]
  1717. bad_a = [-1]
  1718. desired = np.array([0.95905052946317, 0.2383810889437 , 1.04988745750013])
  1719. random = Generator(MT19937(self.seed))
  1720. actual = random.pareto(a * 3)
  1721. assert_array_almost_equal(actual, desired, decimal=14)
  1722. assert_raises(ValueError, random.pareto, bad_a * 3)
  1723. def test_weibull(self):
  1724. a = [1]
  1725. bad_a = [-1]
  1726. desired = np.array([0.67245993212806, 0.21380495318094, 0.7177848928629])
  1727. random = Generator(MT19937(self.seed))
  1728. actual = random.weibull(a * 3)
  1729. assert_array_almost_equal(actual, desired, decimal=14)
  1730. assert_raises(ValueError, random.weibull, bad_a * 3)
  1731. def test_power(self):
  1732. a = [1]
  1733. bad_a = [-1]
  1734. desired = np.array([0.48954864361052, 0.19249412888486, 0.51216834058807])
  1735. random = Generator(MT19937(self.seed))
  1736. actual = random.power(a * 3)
  1737. assert_array_almost_equal(actual, desired, decimal=14)
  1738. assert_raises(ValueError, random.power, bad_a * 3)
  1739. def test_laplace(self):
  1740. loc = [0]
  1741. scale = [1]
  1742. bad_scale = [-1]
  1743. desired = np.array([-1.09698732625119, -0.93470271947368, 0.71592671378202])
  1744. random = Generator(MT19937(self.seed))
  1745. laplace = random.laplace
  1746. actual = laplace(loc * 3, scale)
  1747. assert_array_almost_equal(actual, desired, decimal=14)
  1748. assert_raises(ValueError, laplace, loc * 3, bad_scale)
  1749. random = Generator(MT19937(self.seed))
  1750. laplace = random.laplace
  1751. actual = laplace(loc, scale * 3)
  1752. assert_array_almost_equal(actual, desired, decimal=14)
  1753. assert_raises(ValueError, laplace, loc, bad_scale * 3)
  1754. def test_gumbel(self):
  1755. loc = [0]
  1756. scale = [1]
  1757. bad_scale = [-1]
  1758. desired = np.array([1.70020068231762, 1.52054354273631, -0.34293267607081])
  1759. random = Generator(MT19937(self.seed))
  1760. gumbel = random.gumbel
  1761. actual = gumbel(loc * 3, scale)
  1762. assert_array_almost_equal(actual, desired, decimal=14)
  1763. assert_raises(ValueError, gumbel, loc * 3, bad_scale)
  1764. random = Generator(MT19937(self.seed))
  1765. gumbel = random.gumbel
  1766. actual = gumbel(loc, scale * 3)
  1767. assert_array_almost_equal(actual, desired, decimal=14)
  1768. assert_raises(ValueError, gumbel, loc, bad_scale * 3)
  1769. def test_logistic(self):
  1770. loc = [0]
  1771. scale = [1]
  1772. bad_scale = [-1]
  1773. desired = np.array([-1.607487640433, -1.40925686003678, 1.12887112820397])
  1774. random = Generator(MT19937(self.seed))
  1775. actual = random.logistic(loc * 3, scale)
  1776. assert_array_almost_equal(actual, desired, decimal=14)
  1777. assert_raises(ValueError, random.logistic, loc * 3, bad_scale)
  1778. random = Generator(MT19937(self.seed))
  1779. actual = random.logistic(loc, scale * 3)
  1780. assert_array_almost_equal(actual, desired, decimal=14)
  1781. assert_raises(ValueError, random.logistic, loc, bad_scale * 3)
  1782. assert_equal(random.logistic(1.0, 0.0), 1.0)
  1783. def test_lognormal(self):
  1784. mean = [0]
  1785. sigma = [1]
  1786. bad_sigma = [-1]
  1787. desired = np.array([0.67884390500697, 2.21653186290321, 1.01990310084276])
  1788. random = Generator(MT19937(self.seed))
  1789. lognormal = random.lognormal
  1790. actual = lognormal(mean * 3, sigma)
  1791. assert_array_almost_equal(actual, desired, decimal=14)
  1792. assert_raises(ValueError, lognormal, mean * 3, bad_sigma)
  1793. random = Generator(MT19937(self.seed))
  1794. actual = random.lognormal(mean, sigma * 3)
  1795. assert_raises(ValueError, random.lognormal, mean, bad_sigma * 3)
  1796. def test_rayleigh(self):
  1797. scale = [1]
  1798. bad_scale = [-1]
  1799. desired = np.array(
  1800. [1.1597068009872629,
  1801. 0.6539188836253857,
  1802. 1.1981526554349398]
  1803. )
  1804. random = Generator(MT19937(self.seed))
  1805. actual = random.rayleigh(scale * 3)
  1806. assert_array_almost_equal(actual, desired, decimal=14)
  1807. assert_raises(ValueError, random.rayleigh, bad_scale * 3)
  1808. def test_wald(self):
  1809. mean = [0.5]
  1810. scale = [1]
  1811. bad_mean = [0]
  1812. bad_scale = [-2]
  1813. desired = np.array([0.38052407392905, 0.50701641508592, 0.484935249864])
  1814. random = Generator(MT19937(self.seed))
  1815. actual = random.wald(mean * 3, scale)
  1816. assert_array_almost_equal(actual, desired, decimal=14)
  1817. assert_raises(ValueError, random.wald, bad_mean * 3, scale)
  1818. assert_raises(ValueError, random.wald, mean * 3, bad_scale)
  1819. random = Generator(MT19937(self.seed))
  1820. actual = random.wald(mean, scale * 3)
  1821. assert_array_almost_equal(actual, desired, decimal=14)
  1822. assert_raises(ValueError, random.wald, bad_mean, scale * 3)
  1823. assert_raises(ValueError, random.wald, mean, bad_scale * 3)
  1824. def test_triangular(self):
  1825. left = [1]
  1826. right = [3]
  1827. mode = [2]
  1828. bad_left_one = [3]
  1829. bad_mode_one = [4]
  1830. bad_left_two, bad_mode_two = right * 2
  1831. desired = np.array([1.57781954604754, 1.62665986867957, 2.30090130831326])
  1832. random = Generator(MT19937(self.seed))
  1833. triangular = random.triangular
  1834. actual = triangular(left * 3, mode, right)
  1835. assert_array_almost_equal(actual, desired, decimal=14)
  1836. assert_raises(ValueError, triangular, bad_left_one * 3, mode, right)
  1837. assert_raises(ValueError, triangular, left * 3, bad_mode_one, right)
  1838. assert_raises(ValueError, triangular, bad_left_two * 3, bad_mode_two,
  1839. right)
  1840. random = Generator(MT19937(self.seed))
  1841. triangular = random.triangular
  1842. actual = triangular(left, mode * 3, right)
  1843. assert_array_almost_equal(actual, desired, decimal=14)
  1844. assert_raises(ValueError, triangular, bad_left_one, mode * 3, right)
  1845. assert_raises(ValueError, triangular, left, bad_mode_one * 3, right)
  1846. assert_raises(ValueError, triangular, bad_left_two, bad_mode_two * 3,
  1847. right)
  1848. random = Generator(MT19937(self.seed))
  1849. triangular = random.triangular
  1850. actual = triangular(left, mode, right * 3)
  1851. assert_array_almost_equal(actual, desired, decimal=14)
  1852. assert_raises(ValueError, triangular, bad_left_one, mode, right * 3)
  1853. assert_raises(ValueError, triangular, left, bad_mode_one, right * 3)
  1854. assert_raises(ValueError, triangular, bad_left_two, bad_mode_two,
  1855. right * 3)
  1856. assert_raises(ValueError, triangular, 10., 0., 20.)
  1857. assert_raises(ValueError, triangular, 10., 25., 20.)
  1858. assert_raises(ValueError, triangular, 10., 10., 10.)
  1859. def test_binomial(self):
  1860. n = [1]
  1861. p = [0.5]
  1862. bad_n = [-1]
  1863. bad_p_one = [-1]
  1864. bad_p_two = [1.5]
  1865. desired = np.array([0, 0, 1])
  1866. random = Generator(MT19937(self.seed))
  1867. binom = random.binomial
  1868. actual = binom(n * 3, p)
  1869. assert_array_equal(actual, desired)
  1870. assert_raises(ValueError, binom, bad_n * 3, p)
  1871. assert_raises(ValueError, binom, n * 3, bad_p_one)
  1872. assert_raises(ValueError, binom, n * 3, bad_p_two)
  1873. random = Generator(MT19937(self.seed))
  1874. actual = random.binomial(n, p * 3)
  1875. assert_array_equal(actual, desired)
  1876. assert_raises(ValueError, binom, bad_n, p * 3)
  1877. assert_raises(ValueError, binom, n, bad_p_one * 3)
  1878. assert_raises(ValueError, binom, n, bad_p_two * 3)
  1879. def test_negative_binomial(self):
  1880. n = [1]
  1881. p = [0.5]
  1882. bad_n = [-1]
  1883. bad_p_one = [-1]
  1884. bad_p_two = [1.5]
  1885. desired = np.array([0, 2, 1], dtype=np.int64)
  1886. random = Generator(MT19937(self.seed))
  1887. neg_binom = random.negative_binomial
  1888. actual = neg_binom(n * 3, p)
  1889. assert_array_equal(actual, desired)
  1890. assert_raises(ValueError, neg_binom, bad_n * 3, p)
  1891. assert_raises(ValueError, neg_binom, n * 3, bad_p_one)
  1892. assert_raises(ValueError, neg_binom, n * 3, bad_p_two)
  1893. random = Generator(MT19937(self.seed))
  1894. neg_binom = random.negative_binomial
  1895. actual = neg_binom(n, p * 3)
  1896. assert_array_equal(actual, desired)
  1897. assert_raises(ValueError, neg_binom, bad_n, p * 3)
  1898. assert_raises(ValueError, neg_binom, n, bad_p_one * 3)
  1899. assert_raises(ValueError, neg_binom, n, bad_p_two * 3)
  1900. def test_poisson(self):
  1901. lam = [1]
  1902. bad_lam_one = [-1]
  1903. desired = np.array([0, 0, 3])
  1904. random = Generator(MT19937(self.seed))
  1905. max_lam = random._poisson_lam_max
  1906. bad_lam_two = [max_lam * 2]
  1907. poisson = random.poisson
  1908. actual = poisson(lam * 3)
  1909. assert_array_equal(actual, desired)
  1910. assert_raises(ValueError, poisson, bad_lam_one * 3)
  1911. assert_raises(ValueError, poisson, bad_lam_two * 3)
  1912. def test_zipf(self):
  1913. a = [2]
  1914. bad_a = [0]
  1915. desired = np.array([1, 8, 1])
  1916. random = Generator(MT19937(self.seed))
  1917. zipf = random.zipf
  1918. actual = zipf(a * 3)
  1919. assert_array_equal(actual, desired)
  1920. assert_raises(ValueError, zipf, bad_a * 3)
  1921. with np.errstate(invalid='ignore'):
  1922. assert_raises(ValueError, zipf, np.nan)
  1923. assert_raises(ValueError, zipf, [0, 0, np.nan])
  1924. def test_geometric(self):
  1925. p = [0.5]
  1926. bad_p_one = [-1]
  1927. bad_p_two = [1.5]
  1928. desired = np.array([1, 1, 3])
  1929. random = Generator(MT19937(self.seed))
  1930. geometric = random.geometric
  1931. actual = geometric(p * 3)
  1932. assert_array_equal(actual, desired)
  1933. assert_raises(ValueError, geometric, bad_p_one * 3)
  1934. assert_raises(ValueError, geometric, bad_p_two * 3)
  1935. def test_hypergeometric(self):
  1936. ngood = [1]
  1937. nbad = [2]
  1938. nsample = [2]
  1939. bad_ngood = [-1]
  1940. bad_nbad = [-2]
  1941. bad_nsample_one = [-1]
  1942. bad_nsample_two = [4]
  1943. desired = np.array([0, 0, 1])
  1944. random = Generator(MT19937(self.seed))
  1945. actual = random.hypergeometric(ngood * 3, nbad, nsample)
  1946. assert_array_equal(actual, desired)
  1947. assert_raises(ValueError, random.hypergeometric, bad_ngood * 3, nbad, nsample)
  1948. assert_raises(ValueError, random.hypergeometric, ngood * 3, bad_nbad, nsample)
  1949. assert_raises(ValueError, random.hypergeometric, ngood * 3, nbad, bad_nsample_one)
  1950. assert_raises(ValueError, random.hypergeometric, ngood * 3, nbad, bad_nsample_two)
  1951. random = Generator(MT19937(self.seed))
  1952. actual = random.hypergeometric(ngood, nbad * 3, nsample)
  1953. assert_array_equal(actual, desired)
  1954. assert_raises(ValueError, random.hypergeometric, bad_ngood, nbad * 3, nsample)
  1955. assert_raises(ValueError, random.hypergeometric, ngood, bad_nbad * 3, nsample)
  1956. assert_raises(ValueError, random.hypergeometric, ngood, nbad * 3, bad_nsample_one)
  1957. assert_raises(ValueError, random.hypergeometric, ngood, nbad * 3, bad_nsample_two)
  1958. random = Generator(MT19937(self.seed))
  1959. hypergeom = random.hypergeometric
  1960. actual = hypergeom(ngood, nbad, nsample * 3)
  1961. assert_array_equal(actual, desired)
  1962. assert_raises(ValueError, hypergeom, bad_ngood, nbad, nsample * 3)
  1963. assert_raises(ValueError, hypergeom, ngood, bad_nbad, nsample * 3)
  1964. assert_raises(ValueError, hypergeom, ngood, nbad, bad_nsample_one * 3)
  1965. assert_raises(ValueError, hypergeom, ngood, nbad, bad_nsample_two * 3)
  1966. assert_raises(ValueError, hypergeom, -1, 10, 20)
  1967. assert_raises(ValueError, hypergeom, 10, -1, 20)
  1968. assert_raises(ValueError, hypergeom, 10, 10, -1)
  1969. assert_raises(ValueError, hypergeom, 10, 10, 25)
  1970. # ValueError for arguments that are too big.
  1971. assert_raises(ValueError, hypergeom, 2**30, 10, 20)
  1972. assert_raises(ValueError, hypergeom, 999, 2**31, 50)
  1973. assert_raises(ValueError, hypergeom, 999, [2**29, 2**30], 1000)
  1974. def test_logseries(self):
  1975. p = [0.5]
  1976. bad_p_one = [2]
  1977. bad_p_two = [-1]
  1978. desired = np.array([1, 1, 1])
  1979. random = Generator(MT19937(self.seed))
  1980. logseries = random.logseries
  1981. actual = logseries(p * 3)
  1982. assert_array_equal(actual, desired)
  1983. assert_raises(ValueError, logseries, bad_p_one * 3)
  1984. assert_raises(ValueError, logseries, bad_p_two * 3)
  1985. def test_multinomial(self):
  1986. random = Generator(MT19937(self.seed))
  1987. actual = random.multinomial([5, 20], [1 / 6.] * 6, size=(3, 2))
  1988. desired = np.array([[[0, 0, 2, 1, 2, 0],
  1989. [2, 3, 6, 4, 2, 3]],
  1990. [[1, 0, 1, 0, 2, 1],
  1991. [7, 2, 2, 1, 4, 4]],
  1992. [[0, 2, 0, 1, 2, 0],
  1993. [3, 2, 3, 3, 4, 5]]], dtype=np.int64)
  1994. assert_array_equal(actual, desired)
  1995. random = Generator(MT19937(self.seed))
  1996. actual = random.multinomial([5, 20], [1 / 6.] * 6)
  1997. desired = np.array([[0, 0, 2, 1, 2, 0],
  1998. [2, 3, 6, 4, 2, 3]], dtype=np.int64)
  1999. assert_array_equal(actual, desired)
  2000. class TestThread:
  2001. # make sure each state produces the same sequence even in threads
  2002. def setup(self):
  2003. self.seeds = range(4)
  2004. def check_function(self, function, sz):
  2005. from threading import Thread
  2006. out1 = np.empty((len(self.seeds),) + sz)
  2007. out2 = np.empty((len(self.seeds),) + sz)
  2008. # threaded generation
  2009. t = [Thread(target=function, args=(Generator(MT19937(s)), o))
  2010. for s, o in zip(self.seeds, out1)]
  2011. [x.start() for x in t]
  2012. [x.join() for x in t]
  2013. # the same serial
  2014. for s, o in zip(self.seeds, out2):
  2015. function(Generator(MT19937(s)), o)
  2016. # these platforms change x87 fpu precision mode in threads
  2017. if np.intp().dtype.itemsize == 4 and sys.platform == "win32":
  2018. assert_array_almost_equal(out1, out2)
  2019. else:
  2020. assert_array_equal(out1, out2)
  2021. def test_normal(self):
  2022. def gen_random(state, out):
  2023. out[...] = state.normal(size=10000)
  2024. self.check_function(gen_random, sz=(10000,))
  2025. def test_exp(self):
  2026. def gen_random(state, out):
  2027. out[...] = state.exponential(scale=np.ones((100, 1000)))
  2028. self.check_function(gen_random, sz=(100, 1000))
  2029. def test_multinomial(self):
  2030. def gen_random(state, out):
  2031. out[...] = state.multinomial(10, [1 / 6.] * 6, size=10000)
  2032. self.check_function(gen_random, sz=(10000, 6))
  2033. # See Issue #4263
  2034. class TestSingleEltArrayInput:
  2035. def setup(self):
  2036. self.argOne = np.array([2])
  2037. self.argTwo = np.array([3])
  2038. self.argThree = np.array([4])
  2039. self.tgtShape = (1,)
  2040. def test_one_arg_funcs(self):
  2041. funcs = (random.exponential, random.standard_gamma,
  2042. random.chisquare, random.standard_t,
  2043. random.pareto, random.weibull,
  2044. random.power, random.rayleigh,
  2045. random.poisson, random.zipf,
  2046. random.geometric, random.logseries)
  2047. probfuncs = (random.geometric, random.logseries)
  2048. for func in funcs:
  2049. if func in probfuncs: # p < 1.0
  2050. out = func(np.array([0.5]))
  2051. else:
  2052. out = func(self.argOne)
  2053. assert_equal(out.shape, self.tgtShape)
  2054. def test_two_arg_funcs(self):
  2055. funcs = (random.uniform, random.normal,
  2056. random.beta, random.gamma,
  2057. random.f, random.noncentral_chisquare,
  2058. random.vonmises, random.laplace,
  2059. random.gumbel, random.logistic,
  2060. random.lognormal, random.wald,
  2061. random.binomial, random.negative_binomial)
  2062. probfuncs = (random.binomial, random.negative_binomial)
  2063. for func in funcs:
  2064. if func in probfuncs: # p <= 1
  2065. argTwo = np.array([0.5])
  2066. else:
  2067. argTwo = self.argTwo
  2068. out = func(self.argOne, argTwo)
  2069. assert_equal(out.shape, self.tgtShape)
  2070. out = func(self.argOne[0], argTwo)
  2071. assert_equal(out.shape, self.tgtShape)
  2072. out = func(self.argOne, argTwo[0])
  2073. assert_equal(out.shape, self.tgtShape)
  2074. def test_integers(self, endpoint):
  2075. itype = [np.bool_, np.int8, np.uint8, np.int16, np.uint16,
  2076. np.int32, np.uint32, np.int64, np.uint64]
  2077. func = random.integers
  2078. high = np.array([1])
  2079. low = np.array([0])
  2080. for dt in itype:
  2081. out = func(low, high, endpoint=endpoint, dtype=dt)
  2082. assert_equal(out.shape, self.tgtShape)
  2083. out = func(low[0], high, endpoint=endpoint, dtype=dt)
  2084. assert_equal(out.shape, self.tgtShape)
  2085. out = func(low, high[0], endpoint=endpoint, dtype=dt)
  2086. assert_equal(out.shape, self.tgtShape)
  2087. def test_three_arg_funcs(self):
  2088. funcs = [random.noncentral_f, random.triangular,
  2089. random.hypergeometric]
  2090. for func in funcs:
  2091. out = func(self.argOne, self.argTwo, self.argThree)
  2092. assert_equal(out.shape, self.tgtShape)
  2093. out = func(self.argOne[0], self.argTwo, self.argThree)
  2094. assert_equal(out.shape, self.tgtShape)
  2095. out = func(self.argOne, self.argTwo[0], self.argThree)
  2096. assert_equal(out.shape, self.tgtShape)
  2097. @pytest.mark.parametrize("config", JUMP_TEST_DATA)
  2098. def test_jumped(config):
  2099. # Each config contains the initial seed, a number of raw steps
  2100. # the sha256 hashes of the initial and the final states' keys and
  2101. # the position of of the initial and the final state.
  2102. # These were produced using the original C implementation.
  2103. seed = config["seed"]
  2104. steps = config["steps"]
  2105. mt19937 = MT19937(seed)
  2106. # Burn step
  2107. mt19937.random_raw(steps)
  2108. key = mt19937.state["state"]["key"]
  2109. if sys.byteorder == 'big':
  2110. key = key.byteswap()
  2111. sha256 = hashlib.sha256(key)
  2112. assert mt19937.state["state"]["pos"] == config["initial"]["pos"]
  2113. assert sha256.hexdigest() == config["initial"]["key_sha256"]
  2114. jumped = mt19937.jumped()
  2115. key = jumped.state["state"]["key"]
  2116. if sys.byteorder == 'big':
  2117. key = key.byteswap()
  2118. sha256 = hashlib.sha256(key)
  2119. assert jumped.state["state"]["pos"] == config["jumped"]["pos"]
  2120. assert sha256.hexdigest() == config["jumped"]["key_sha256"]
  2121. def test_broadcast_size_error():
  2122. mu = np.ones(3)
  2123. sigma = np.ones((4, 3))
  2124. size = (10, 4, 2)
  2125. assert random.normal(mu, sigma, size=(5, 4, 3)).shape == (5, 4, 3)
  2126. with pytest.raises(ValueError):
  2127. random.normal(mu, sigma, size=size)
  2128. with pytest.raises(ValueError):
  2129. random.normal(mu, sigma, size=(1, 3))
  2130. with pytest.raises(ValueError):
  2131. random.normal(mu, sigma, size=(4, 1, 1))
  2132. # 1 arg
  2133. shape = np.ones((4, 3))
  2134. with pytest.raises(ValueError):
  2135. random.standard_gamma(shape, size=size)
  2136. with pytest.raises(ValueError):
  2137. random.standard_gamma(shape, size=(3,))
  2138. with pytest.raises(ValueError):
  2139. random.standard_gamma(shape, size=3)
  2140. # Check out
  2141. out = np.empty(size)
  2142. with pytest.raises(ValueError):
  2143. random.standard_gamma(shape, out=out)
  2144. # 2 arg
  2145. with pytest.raises(ValueError):
  2146. random.binomial(1, [0.3, 0.7], size=(2, 1))
  2147. with pytest.raises(ValueError):
  2148. random.binomial([1, 2], 0.3, size=(2, 1))
  2149. with pytest.raises(ValueError):
  2150. random.binomial([1, 2], [0.3, 0.7], size=(2, 1))
  2151. with pytest.raises(ValueError):
  2152. random.multinomial([2, 2], [.3, .7], size=(2, 1))
  2153. # 3 arg
  2154. a = random.chisquare(5, size=3)
  2155. b = random.chisquare(5, size=(4, 3))
  2156. c = random.chisquare(5, size=(5, 4, 3))
  2157. assert random.noncentral_f(a, b, c).shape == (5, 4, 3)
  2158. with pytest.raises(ValueError, match=r"Output size \(6, 5, 1, 1\) is"):
  2159. random.noncentral_f(a, b, c, size=(6, 5, 1, 1))
  2160. def test_broadcast_size_scalar():
  2161. mu = np.ones(3)
  2162. sigma = np.ones(3)
  2163. random.normal(mu, sigma, size=3)
  2164. with pytest.raises(ValueError):
  2165. random.normal(mu, sigma, size=2)
  2166. def test_ragged_shuffle():
  2167. # GH 18142
  2168. seq = [[], [], 1]
  2169. gen = Generator(MT19937(0))
  2170. assert_no_warnings(gen.shuffle, seq)
  2171. assert seq == [1, [], []]
  2172. @pytest.mark.parametrize("high", [-2, [-2]])
  2173. @pytest.mark.parametrize("endpoint", [True, False])
  2174. def test_single_arg_integer_exception(high, endpoint):
  2175. # GH 14333
  2176. gen = Generator(MT19937(0))
  2177. msg = 'high < 0' if endpoint else 'high <= 0'
  2178. with pytest.raises(ValueError, match=msg):
  2179. gen.integers(high, endpoint=endpoint)
  2180. msg = 'low > high' if endpoint else 'low >= high'
  2181. with pytest.raises(ValueError, match=msg):
  2182. gen.integers(-1, high, endpoint=endpoint)
  2183. with pytest.raises(ValueError, match=msg):
  2184. gen.integers([-1], high, endpoint=endpoint)
  2185. @pytest.mark.parametrize("dtype", ["f4", "f8"])
  2186. def test_c_contig_req_out(dtype):
  2187. # GH 18704
  2188. out = np.empty((2, 3), order="F", dtype=dtype)
  2189. shape = [1, 2, 3]
  2190. with pytest.raises(ValueError, match="Supplied output array"):
  2191. random.standard_gamma(shape, out=out, dtype=dtype)
  2192. with pytest.raises(ValueError, match="Supplied output array"):
  2193. random.standard_gamma(shape, out=out, size=out.shape, dtype=dtype)
  2194. @pytest.mark.parametrize("dtype", ["f4", "f8"])
  2195. @pytest.mark.parametrize("order", ["F", "C"])
  2196. @pytest.mark.parametrize("dist", [random.standard_normal, random.random])
  2197. def test_contig_req_out(dist, order, dtype):
  2198. # GH 18704
  2199. out = np.empty((2, 3), dtype=dtype, order=order)
  2200. variates = dist(out=out, dtype=dtype)
  2201. assert variates is out
  2202. variates = dist(out=out, dtype=dtype, size=out.shape)
  2203. assert variates is out