|
|
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. # --------------------------------------------------------------------------
# This tool measures the inference performance of onnxruntime or onnxruntime-gpu python package on Bert model.
# The input model shall have exactly three inputs. The model is either fully optimized (with EmbedLayerNormalization node), # or with reasonable input names (one input name has 'mask' substring, another has 'token' or 'segment' substring). # See get_bert_inputs function in bert_test_data.py for more information.
# Example command to run test on batch_size 1 and 2 for a model on GPU: # python bert_perf_test.py --model bert.onnx --batch_size 1 2 --sequence_length 128 --use_gpu --samples 1000 --test_times 1
import argparse import csv import multiprocessing import os import random import statistics import timeit from dataclasses import dataclass from datetime import datetime from pathlib import Path
import numpy as np import psutil import torch from bert_test_data import generate_test_data, get_bert_inputs
@dataclass class TestSetting: batch_size: int sequence_length: int test_cases: int test_times: int use_gpu: bool use_io_binding: bool provider: str intra_op_num_threads: int seed: int verbose: bool log_severity: int
@dataclass class ModelSetting: model_path: str input_ids_name: str segment_ids_name: str input_mask_name: str opt_level: int
def create_session(model_path, use_gpu, provider, intra_op_num_threads, graph_optimization_level=None, log_severity=2): import onnxruntime
onnxruntime.set_default_logger_severity(log_severity)
if use_gpu and ("CUDAExecutionProvider" not in onnxruntime.get_available_providers()): print( "Warning: Please install onnxruntime-gpu package instead of onnxruntime, and use a machine with GPU for testing gpu performance." )
if use_gpu: if provider == "dml": execution_providers = ["DmlExecutionProvider", "CPUExecutionProvider"] elif provider == "rocm": execution_providers = ["ROCMExecutionProvider", "CPUExecutionProvider"] elif provider == "migraphx": execution_providers = [ "MIGraphXExecutionProvider", "ROCMExecutionProvider", "CPUExecutionProvider", ] elif provider == "cuda": execution_providers = ["CUDAExecutionProvider", "CPUExecutionProvider"] elif provider == "tensorrt": execution_providers = [ "TensorrtExecutionProvider", "CUDAExecutionProvider", "CPUExecutionProvider", ] else: execution_providers = ["CUDAExecutionProvider", "CPUExecutionProvider"] else: execution_providers = ["CPUExecutionProvider"]
sess_options = onnxruntime.SessionOptions() sess_options.log_severity_level = log_severity sess_options.execution_mode = onnxruntime.ExecutionMode.ORT_SEQUENTIAL
if graph_optimization_level is None: sess_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL elif graph_optimization_level == 0: sess_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_DISABLE_ALL elif graph_optimization_level == 1: sess_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_BASIC elif graph_optimization_level == 2: sess_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_EXTENDED elif graph_optimization_level == 99: sess_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL else: sess_options.graph_optimization_level = graph_optimization_level
if intra_op_num_threads is not None: sess_options.intra_op_num_threads = intra_op_num_threads
session = onnxruntime.InferenceSession(model_path, sess_options, providers=execution_providers)
if use_gpu: if provider == "dml": assert "DmlExecutionProvider" in session.get_providers() elif provider == "rocm": assert "ROCMExecutionProvider" in session.get_providers() elif provider == "migraphx": assert "MIGraphXExecutionProvider" in session.get_providers() assert "ROCMExecutionProvider" in session.get_providers() elif provider == "cuda": assert "CUDAExecutionProvider" in session.get_providers() elif provider == "tensorrt": assert "TensorrtExecutionProvider" in session.get_providers() assert "CUDAExecutionProvider" in session.get_providers() else: assert "CUDAExecutionProvider" in session.get_providers() else: assert "CPUExecutionProvider" in session.get_providers()
return session
def numpy_type(torch_type): type_map = { torch.float32: np.float32, torch.float16: np.float16, torch.int32: np.int32, torch.int64: np.longlong, } return type_map[torch_type]
def create_input_output_tensors(inputs, outputs, device): input_tensors = {name: torch.from_numpy(array).to(device) for name, array in inputs.items()} output_tensors = {name: torch.from_numpy(array).to(device) for name, array in outputs.items()} return input_tensors, output_tensors
def create_io_binding(sess, input_tensors, output_tensors): io_binding = sess.io_binding() for name, tensor in input_tensors.items(): io_binding.bind_input( name, tensor.device.type, 0, numpy_type(tensor.dtype), tensor.shape, tensor.data_ptr(), ) for name, tensor in output_tensors.items(): io_binding.bind_output( name, tensor.device.type, 0, numpy_type(tensor.dtype), tensor.shape, tensor.data_ptr(), ) return io_binding
def onnxruntime_inference_with_io_binding(session, all_inputs, output_names, test_setting): results = [] latency_list = [] device = "cuda" if test_setting.use_gpu else "cpu" for test_case_id, inputs in enumerate(all_inputs): result = session.run(output_names, inputs) results.append(result) outputs = {} for i in range(len(output_names)): outputs[output_names[i]] = result[i]
input_tensors, output_tensors = create_input_output_tensors(inputs, outputs, device) io_binding = create_io_binding(session, input_tensors, output_tensors)
# warm up once session.run_with_iobinding(io_binding)
start_time = timeit.default_timer() session.run_with_iobinding(io_binding) latency = timeit.default_timer() - start_time latency_list.append(latency)
return results, latency_list
def onnxruntime_inference(session, all_inputs, output_names): if len(all_inputs) > 0: # Use a random input as warm up. session.run(output_names, random.choice(all_inputs))
results = [] latency_list = [] for test_case_id, inputs in enumerate(all_inputs): start_time = timeit.default_timer() result = session.run(output_names, inputs) latency = timeit.default_timer() - start_time results.append(result) latency_list.append(latency) return results, latency_list
def to_string(model_path, session, test_setting): sess_options = session.get_session_options() option = "model={},".format(os.path.basename(model_path)) option += "graph_optimization_level={},intra_op_num_threads={},".format( sess_options.graph_optimization_level, sess_options.intra_op_num_threads ).replace("GraphOptimizationLevel.ORT_", "") option += f"batch_size={test_setting.batch_size},sequence_length={test_setting.sequence_length},test_cases={test_setting.test_cases},test_times={test_setting.test_times},use_gpu={test_setting.use_gpu}" return option
def run_one_test(model_setting, test_setting, perf_results, all_inputs, intra_op_num_threads): session = create_session( model_setting.model_path, test_setting.use_gpu, test_setting.provider, intra_op_num_threads, model_setting.opt_level, log_severity=test_setting.log_severity, ) output_names = [output.name for output in session.get_outputs()]
key = to_string(model_setting.model_path, session, test_setting) if key in perf_results: print("skip duplicated test:", key) return
print("Running test:", key)
all_latency_list = [] if test_setting.use_io_binding: for i in range(test_setting.test_times): results, latency_list = onnxruntime_inference_with_io_binding( session, all_inputs, output_names, test_setting ) all_latency_list.extend(latency_list) else: for i in range(test_setting.test_times): results, latency_list = onnxruntime_inference(session, all_inputs, output_names) all_latency_list.extend(latency_list)
# latency in miliseconds latency_ms = np.array(all_latency_list) * 1000
average_latency = statistics.mean(latency_ms) latency_50 = np.percentile(latency_ms, 50) latency_75 = np.percentile(latency_ms, 75) latency_90 = np.percentile(latency_ms, 90) latency_95 = np.percentile(latency_ms, 95) latency_99 = np.percentile(latency_ms, 99) throughput = test_setting.batch_size * (1000.0 / average_latency)
perf_results[key] = ( average_latency, latency_50, latency_75, latency_90, latency_95, latency_99, throughput, )
print( "Average latency = {} ms, Throughput = {} QPS".format(format(average_latency, ".2f"), format(throughput, ".2f")) )
def launch_test(model_setting, test_setting, perf_results, all_inputs, intra_op_num_threads): process = multiprocessing.Process( target=run_one_test, args=( model_setting, test_setting, perf_results, all_inputs, intra_op_num_threads, ), ) process.start() process.join()
def run_perf_tests(model_setting, test_setting, perf_results, all_inputs): if test_setting.intra_op_num_threads is not None: launch_test( model_setting, test_setting, perf_results, all_inputs, test_setting.intra_op_num_threads, ) return
cpu_count = psutil.cpu_count(logical=False) logical_cores = psutil.cpu_count(logical=True)
candidate_threads = list(set([logical_cores, cpu_count])) for i in range(1, min(16, logical_cores)): if i not in candidate_threads: candidate_threads.append(i) candidate_threads.sort(reverse=True)
for intra_op_num_threads in candidate_threads: launch_test(model_setting, test_setting, perf_results, all_inputs, intra_op_num_threads)
def run_performance(model_setting, test_setting, perf_results): input_ids, segment_ids, input_mask = get_bert_inputs( model_setting.model_path, model_setting.input_ids_name, model_setting.segment_ids_name, model_setting.input_mask_name, )
# Do not generate random mask for performance test. print( f"Generating {test_setting.test_cases} samples for batch_size={test_setting.batch_size} sequence_length={test_setting.sequence_length}" ) all_inputs = generate_test_data( test_setting.batch_size, test_setting.sequence_length, test_setting.test_cases, test_setting.seed, test_setting.verbose, input_ids, segment_ids, input_mask, random_mask_length=False, )
run_perf_tests(model_setting, test_setting, perf_results, all_inputs)
def parse_arguments(): parser = argparse.ArgumentParser() parser.add_argument("--model", required=True, type=str, help="bert onnx model path")
parser.add_argument( "-b", "--batch_size", required=True, type=int, nargs="+", help="batch size of input. Allow one or multiple values in the range of [1, 128].", )
parser.add_argument( "-s", "--sequence_length", required=True, type=int, help="maximum sequence length of input", )
parser.add_argument( "--samples", required=False, type=int, default=10, help="number of samples to be generated", )
parser.add_argument( "-t", "--test_times", required=False, type=int, default=0, help="number of times to run per sample. By default, the value is 1000 / samples", )
parser.add_argument( "--opt_level", required=False, type=int, choices=[0, 1, 2, 99], default=99, help="onnxruntime optimization level: 0 - disable all, 1 - basic, 2 - extended, 99 - enable all.", )
parser.add_argument( "--seed", required=False, type=int, default=3, help="random seed. Use the same seed to make sure test data is same in multiple tests.", )
parser.add_argument( "--verbose", required=False, action="store_true", help="print verbose information", ) parser.set_defaults(verbose=False)
parser.add_argument( "--log_severity", required=False, type=int, default=2, choices=[0, 1, 2, 3, 4], help="0:Verbose, 1:Info, 2:Warning, 3:Error, 4:Fatal", )
parser.add_argument("--use_gpu", required=False, action="store_true", help="use GPU") parser.set_defaults(use_gpu=False)
parser.add_argument("--use_io_binding", required=False, action="store_true", help="use io_binding") parser.set_defaults(use_io_binding=False)
parser.add_argument( "--provider", required=False, type=str, default=None, help="Execution provider to use", )
parser.add_argument( "-n", "--intra_op_num_threads", required=False, type=int, default=None, help=">=0, set intra_op_num_threads", )
parser.add_argument( "--input_ids_name", required=False, type=str, default=None, help="input name for input ids", ) parser.add_argument( "--segment_ids_name", required=False, type=str, default=None, help="input name for segment ids", ) parser.add_argument( "--input_mask_name", required=False, type=str, default=None, help="input name for attention mask", )
args = parser.parse_args() return args
def main(): args = parse_arguments()
if args.test_times == 0: args.test_times = max(1, int(1000 / args.samples))
manager = multiprocessing.Manager() perf_results = manager.dict()
batch_size_set = set(args.batch_size) if not min(batch_size_set) >= 1 and max(batch_size_set) <= 128: raise Exception("batch_size not in range [1, 128]")
model_setting = ModelSetting( args.model, args.input_ids_name, args.segment_ids_name, args.input_mask_name, args.opt_level, )
for batch_size in batch_size_set: test_setting = TestSetting( batch_size, args.sequence_length, args.samples, args.test_times, args.use_gpu, args.use_io_binding, args.provider, args.intra_op_num_threads, args.seed, args.verbose, args.log_severity, )
print("test setting", test_setting) run_performance(model_setting, test_setting, perf_results)
# Sort the results so that the first one has smallest latency. sorted_results = sorted(perf_results.items(), reverse=False, key=lambda x: x[1])
summary_file = os.path.join( Path(args.model).parent, "perf_results_{}_B{}_S{}_{}.txt".format( "GPU" if args.use_gpu else "CPU", "-".join([str(x) for x in sorted(list(batch_size_set))]), args.sequence_length, datetime.now().strftime("%Y%m%d-%H%M%S"), ), ) with open(summary_file, "w+", newline="") as tsv_file: tsv_writer = csv.writer(tsv_file, delimiter="\t", lineterminator="\n") headers = None for (key, perf_result) in sorted_results: params = key.split(",") if headers is None: headers = [ "Latency(ms)", "Latency_P50", "Latency_P75", "Latency_P90", "Latency_P95", "Latency_P99", "Throughput(QPS)", ] headers.extend([x.split("=")[0] for x in params]) tsv_writer.writerow(headers)
values = [format(x, ".2f") for x in perf_result] values.extend([x.split("=")[1] for x in params]) tsv_writer.writerow(values)
print("Test summary is saved to", summary_file)
if __name__ == "__main__": # work around for AnaConda Jupyter. See https://stackoverflow.com/questions/45720153/python-multiprocessing-error-attributeerror-module-main-has-no-attribute __spec__ = None
main()
|