|
|
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. # --------------------------------------------------------------------------
from logging import getLogger from typing import Dict
from fusion_base import Fusion from fusion_utils import FusionUtils from onnx import helper from onnx_model import OnnxModel
logger = getLogger(__name__)
class FusionQOrderedMatMul(Fusion): def __init__(self, model: OnnxModel): super().__init__(model, "QOrderedMatMul", "MatMul")
def fuse(self, node, input_name_to_nodes: Dict, output_name_to_node: Dict): matmul_children = self.model.get_children(node, input_name_to_nodes)
# Should only have 1 child - Bias Add if len(matmul_children) != 1 or matmul_children[0].op_type != "Add": return
bias_add_node = matmul_children[0]
# Atleast one of the inputs to Bias Add node must be a constant bias_add_node_index = 0 if ( self.model.get_constant_value(bias_add_node.input[0]) is None and self.model.get_constant_value(bias_add_node.input[1]) is None ): return
if self.model.get_constant_value(bias_add_node.input[0]) is None: bias_add_node_index = 1
bias_add_children = self.model.get_children(bias_add_node, input_name_to_nodes)
if len(bias_add_children) != 1: return
bias_add_child = bias_add_children[0]
# Bias Add can have another Add downstream (Residual Add layer) residual_add_node = None
downstream_quantize_node = None
if bias_add_child.op_type == "Add": residual_add_node = bias_add_child
residual_add_children = self.model.get_children(residual_add_node, input_name_to_nodes)
if len(residual_add_children) != 1 or residual_add_children[0].op_type != "QuantizeLinear": return
downstream_quantize_node = residual_add_children[0]
elif bias_add_child.op_type == "QuantizeLinear": downstream_quantize_node = bias_add_child
else: return
# Make sure the downstream QuantizeLinear has the proper zero points and scales if not FusionUtils.check_qdq_node_for_fusion(downstream_quantize_node, self.model): return
# The first input to MatMul should flow through a DequantizeLinear node first_path_id, first_input_parent_nodes, _ = self.model.match_parent_paths( node, [(["DequantizeLinear"], [0])], output_name_to_node, )
# If Attention is not fused, this is the pattern to look for # leading upto the MatMul reshape_node_0 = None transpose_node_0 = None if first_path_id < 0: first_path_id, first_input_parent_nodes, _ = self.model.match_parent_paths( node, [(["Reshape", "Transpose", "DequantizeLinear", "QuantizeLinear"], [0, 0, 0, 0])], output_name_to_node, )
if first_path_id < 0: return
reshape_node_0 = first_input_parent_nodes[0] transpose_node_0 = first_input_parent_nodes[1] dequantize_node_0 = first_input_parent_nodes[2] else: dequantize_node_0 = first_input_parent_nodes[0]
# Make sure the upstream DequantizeLinear-0 has the proper zero points and scales if not FusionUtils.check_qdq_node_for_fusion(dequantize_node_0, self.model): return
# The second input to MatMul should flow through a DequantizeLinear node dequantize_node_1 = None is_weight_transpose_required = True
weight_path_id, weight_nodes, _ = self.model.match_parent_paths( node, [(["DequantizeLinear", "QuantizeLinear", "Transpose", "DequantizeLinear"], [1, 0, 0, 0])], output_name_to_node, )
if weight_path_id < 0: weight_path_id, weight_nodes, _ = self.model.match_parent_paths( node, [(["DequantizeLinear"], [1])], output_name_to_node, )
if weight_path_id < 0: return
dequantize_node_1 = weight_nodes[0] else: is_weight_transpose_required = False dequantize_node_1 = weight_nodes[3]
# Check if weight 'B' is a constant if self.model.get_constant_value(dequantize_node_1.input[0]) is None: return
# Make sure the upstream DequantizeLinear-1 has the proper zero points and scales # Per-channel scales are supported for weights alone if not FusionUtils.check_qdq_node_for_fusion(dequantize_node_1, self.model, False): return
# Make sure the upstream flow into the Residual Add node flows through a DQ node residual_add_dequantize_node = None
if residual_add_node is not None: residual_path_id, residual_input_parent_nodes, _ = self.model.match_parent_paths( residual_add_node, [ (["DequantizeLinear"], [1]), ], output_name_to_node, )
if residual_path_id < 0: return
residual_add_dequantize_node = residual_input_parent_nodes[0]
# Make sure the upstream DequantizeLinear to the Residual Add has the proper zero points and scales if residual_add_dequantize_node is not None and not FusionUtils.check_qdq_node_for_fusion( residual_add_dequantize_node, self.model ): return
# Subgraph nodes to be fused subgraph_nodes = [node, bias_add_node] # MatMul + Bias Add
if residual_add_node is not None: subgraph_nodes.extend([residual_add_node]) # Residual Add
subgraph_nodes.extend(weight_nodes) subgraph_nodes.extend([downstream_quantize_node]) # Downstream Q node
if not self.model.is_safe_to_fuse_nodes( subgraph_nodes, downstream_quantize_node.output, input_name_to_nodes, output_name_to_node ): logger.debug(f"It is not safe to fuse QOrderedMatMul node. Skip") return
# Deal with the case where-in the Attention subgraph is not fused if transpose_node_0 is not None: self.model.replace_node_input(transpose_node_0, transpose_node_0.input[0], dequantize_node_0.input[0])
# Make inputs fused_node_inputs = [ reshape_node_0.output[0] if reshape_node_0 is not None else dequantize_node_0.input[0], dequantize_node_0.input[1], dequantize_node_1.input[0], dequantize_node_1.input[1], downstream_quantize_node.input[1], bias_add_node.input[bias_add_node_index], ]
if residual_add_node is not None: fused_node_inputs.append(residual_add_dequantize_node.input[0]) fused_node_inputs.append(residual_add_dequantize_node.input[1])
# The MatMul weight 'B' and 'bias' need some post-processing # Transpose weight 'B' from order ROW to order COL # This offline transpose is needed only while using the CUDA EP # TODO: Make this fusion logic EP-agnostic ? if is_weight_transpose_required: weight_tensor = self.model.get_initializer(dequantize_node_1.input[0]) FusionUtils.transpose_2d_int8_tensor(weight_tensor)
fused_node = helper.make_node( "QOrderedMatMul", inputs=fused_node_inputs, outputs=[downstream_quantize_node.output[0]], name=self.model.create_node_name("QOrderedMatMul", name_prefix="QOrderedMatMul"), )
fused_node.attribute.extend([helper.make_attribute("order_A", 1)]) fused_node.attribute.extend([helper.make_attribute("order_B", 0)]) fused_node.attribute.extend([helper.make_attribute("order_Y", 1)])
fused_node.domain = "com.microsoft"
self.nodes_to_remove.extend(subgraph_nodes) self.nodes_to_add.append(fused_node) self.node_name_to_graph_name[fused_node.name] = self.this_graph_name
|