|
|
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. # --------------------------------------------------------------------------
from logging import getLogger
from fusion_base import Fusion from fusion_utils import NumpyHelper from onnx import helper from onnx_model import OnnxModel
logger = getLogger(__name__)
class FusionSkipLayerNormalization(Fusion): """
Fuse Add + LayerNormalization into one node: SkipLayerNormalization Note: This fusion does not check the input shape of Add and LayerNormalization. """
def __init__(self, model: OnnxModel): super().__init__(model, "SkipLayerNormalization", "LayerNormalization") # Update shape inference is needed since other fusions might add new edge which does not have shape info yet. self.shape_infer_helper = self.model.infer_runtime_shape({"batch_size": 4, "seq_len": 7}, update=True)
if self.shape_infer_helper is None: # TODO(tianleiwu): support subgraph in shape inference or add broadcasting in SkipLayerNormalization op. logger.warning("symbolic shape inference disabled or failed.")
def fuse(self, node, input_name_to_nodes, output_name_to_node): add = self.model.get_parent(node, 0, output_name_to_node)
# In some models there is input_ids->gather->add->LayerNorm and one of input of the # add node is initializer with fixed shape which should not be fused into SkipLayerNorm if add is None: return
for add_input in add.input: if self.model.get_initializer(add_input) != None: return
# The number of input node of add should be 2 if len(self.model.get_parents(add)) != 2: return
if self.shape_infer_helper is not None: if not self.shape_infer_helper.compare_shape(add.input[0], add.input[1]): logger.debug( "skip SkipLayerNormalization fusion since shape of inputs (%s, %s) are not same", add.input[0], add.input[1], ) return else: logger.debug("skip SkipLayerNormalization fusion since symbolic shape inference failed") return
gather_path = self.model.match_parent_path(add, ["Gather"], [None]) if gather_path is not None and self.model.find_graph_input(gather_path[0].input[1]) is None: if self.model.match_parent_path(gather_path[0], ["ConstantOfShape"], [1]) is None: return
residual_add_has_multiple_consumers = False add_children = self.model.get_children(add, input_name_to_nodes)
# This means that the residual Add before the LayerNormalization produces an output # that is consumed by some other nodes other than the LayerNormalization itself # We can still go ahead with the SkipLayerNormalization fusion but we need to # preserve the output of Add and that needs to be produced by SkipLayerNormalization. if len(add_children) != 1: residual_add_has_multiple_consumers = True
outputs_to_keep = node.output
if residual_add_has_multiple_consumers: outputs_to_keep.extend([add.output[0]])
outputs = [node.output[0]]
# Skip the other optional outputs of SkipLayerNormalization before adding the Add's output if residual_add_has_multiple_consumers: outputs.extend(["", "", add.output[0]])
if ( add is not None and add.op_type == "Add" and self.model.is_safe_to_fuse_nodes([add, node], outputs_to_keep, input_name_to_nodes, output_name_to_node) ): self.nodes_to_remove.extend([add, node])
inputs = [add.input[0], add.input[1], node.input[1], node.input[2]] normalize_node = helper.make_node( "SkipLayerNormalization", inputs=inputs, outputs=outputs, name=self.model.create_node_name("SkipLayerNormalization", name_prefix="SkipLayerNorm"), ) normalize_node.domain = "com.microsoft"
# Pass attribute "epsilon" from layernorm node to SkipLayerNormalization for att in node.attribute: if att.name == "epsilon": normalize_node.attribute.extend([att])
# Set default epsilon if no epsilon exists from layernorm if len(normalize_node.attribute) == 0: normalize_node.attribute.extend([helper.make_attribute("epsilon", 1.0e-12)])
self.nodes_to_add.append(normalize_node) self.node_name_to_graph_name[normalize_node.name] = self.this_graph_name
class FusionBiasSkipLayerNormalization(Fusion): def __init__(self, model: OnnxModel): super().__init__(model, "SkipLayerNormalization", "SkipLayerNormalization", "add bias")
def fuse(self, node, input_name_to_nodes, output_name_to_node): if len(node.input) != 4: return
return_indice = [] nodes = self.model.match_parent_path(node, ["Add", "MatMul"], [None, None], None, return_indice) if nodes is None: # In case of fp16, we could have a Cast between the MatMul and the bias Add nodes = self.model.match_parent_path( node, ["Add", "Cast", "MatMul"], [None, None, None], None, return_indice ) if nodes is None: return
assert len(return_indice) == 2 or len(return_indice) == 3 add_input_index = return_indice[0] if add_input_index >= 2: return
(add, matmul) = nodes
# bias should be one dimension bias_index = -1 for i, input in enumerate(add.input): initializer = self.model.get_initializer(input) if initializer is None: continue bias_index = i bias_weight = NumpyHelper.to_array(initializer) break if bias_weight is None: logger.debug(f"Bias weight not found") return if len(bias_weight.shape) != 1: logger.debug(f"Bias weight is not 1D") return
subgraph_nodes = [node, add] if not self.model.is_safe_to_fuse_nodes(subgraph_nodes, node.output, input_name_to_nodes, output_name_to_node): logger.debug(f"Skip fusing SkipLayerNormalization with Bias since it is not safe") return
self.nodes_to_remove.extend(subgraph_nodes) inputs = [ node.input[1 - add_input_index], matmul.output[0], node.input[2], node.input[3], add.input[bias_index], ] new_node = helper.make_node( "SkipLayerNormalization", inputs=inputs, outputs=node.output, name=self.model.create_node_name("SkipLayerNormalization", "SkipLayerNorm_AddBias_"), ) new_node.domain = "com.microsoft"
# Pass attribute "epsilon" from skiplayernorm node to skiplayernorm(add bias) for att in node.attribute: if att.name == "epsilon": new_node.attribute.extend([att])
# Set default epsilon if no epsilon exists from skiplayernorm if len(new_node.attribute) == 0: new_node.attribute.extend([helper.make_attribute("epsilon", 1.0e-12)])
self.nodes_to_add.append(new_node) self.node_name_to_graph_name[new_node.name] = self.this_graph_name
|