|
|
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- # This script helps onnx conversion and validation for GPT2 model with past state. import logging import os import pickle import random import shutil import sys import tempfile import time from pathlib import Path from typing import Dict, List, Tuple, Union
import numpy import onnx import torch from transformers import GPT2Config, GPT2LMHeadModel, GPT2Model, TFGPT2Model
sys.path.append(os.path.join(os.path.dirname(__file__), "..", ".."))
from benchmark_helper import Precision from float16 import float_to_float16_max_diff from io_binding_helper import IOBindingHelper from onnx_model import OnnxModel from torch_onnx_export_helper import torch_onnx_export
logger = logging.getLogger(__name__)
PRETRAINED_GPT2_MODELS = ["distilgpt2", "gpt2", "gpt2-medium", "gpt2-large", "gpt2-xl"]
DEFAULT_TOLERANCE = { Precision.FLOAT32: 0.0005, Precision.FLOAT16: 0.2, Precision.INT8: 3.0, }
class GPT2ModelNoPastState(GPT2Model): """Here we wrap a class to disable past state output."""
def __init__(self, config): super().__init__(config)
def forward(self, input_ids): return super().forward(input_ids, use_cache=False, return_dict=False)
class TFGPT2ModelNoPastState(TFGPT2Model): """Here we wrap a class to disable past state output."""
def __init__(self, config): config.use_cache = False super().__init__(config)
def forward(self, input_ids): return super().call(input_ids, use_cache=False)
class MyGPT2Model(GPT2Model): """Here we wrap a class for Onnx model conversion for GPT2Model with past state."""
def __init__(self, config): super().__init__(config)
@staticmethod def post_process(result, num_layer): if isinstance(result[1][0], tuple) or isinstance(result[1][0], list): assert len(result[1]) == num_layer and len(result[1][0]) == 2 # assert len(result[1][0][0].shape) == 4 and result[1][0][0].shape == result[1][0][1].shape present = [] for i in range(num_layer): # Since transformers v4.*, past key and values are separated outputs. # Here we concate them into one tensor to be compatible with Attention operator. present.append( torch.cat( (result[1][i][0].unsqueeze(0), result[1][i][1].unsqueeze(0)), dim=0, ) ) return (result[0], tuple(present))
return result
def forward(self, input_ids, position_ids, attention_mask, *past): result = super().forward( input_ids, position_ids=position_ids, attention_mask=attention_mask, past_key_values=past, return_dict=False, ) return MyGPT2Model.post_process(result, self.config.n_layer)
class MyGPT2LMHeadModel(GPT2LMHeadModel): """Here we wrap a class for Onnx model conversion for GPT2LMHeadModel with past state."""
def __init__(self, config): super().__init__(config)
def forward(self, input_ids, position_ids, attention_mask, *past): result = super().forward( input_ids, position_ids=position_ids, attention_mask=attention_mask, past_key_values=past, return_dict=False, )
return MyGPT2Model.post_process(result, self.config.n_layer)
class MyGPT2LMHeadModel_NoPadding(GPT2LMHeadModel): """Here we wrap a class for Onnx model conversion for GPT2LMHeadModel with past state and no padding.
When you always use batch_size=1 in inference, there is no padding in inputs. In such case, position_ids and attention_mask need no be in inputs. """
def __init__(self, config): super().__init__(config)
def forward(self, input_ids, *past): result = super().forward(input_ids, past_key_values=past, return_dict=False)
return MyGPT2Model.post_process(result, self.config.n_layer)
# Maps model class name to a tuple of model class, name of first output and use padding or not MODEL_CLASSES = { "GPT2LMHeadModel": (MyGPT2LMHeadModel, "logits", True), "GPT2LMHeadModel_NoPadding": (MyGPT2LMHeadModel_NoPadding, "logits", False), "GPT2Model": (MyGPT2Model, "last_state", True), }
class Gpt2Inputs: def __init__(self, input_ids, position_ids, attention_mask, past): self.input_ids: torch.LongTensor = input_ids self.position_ids: torch.LongTensor = position_ids self.attention_mask: Union[torch.LongTensor, torch.FloatTensor, torch.HalfTensor] = attention_mask self.past: Union[List[torch.FloatTensor], List[torch.HalfTensor]] = past
def to_list(self) -> List: input_list = [v for v in [self.input_ids, self.position_ids, self.attention_mask] if v is not None] if self.past: input_list.extend(self.past)
return input_list
def to_tuple(self) -> Tuple: return tuple(v for v in [self.input_ids, self.position_ids, self.attention_mask, self.past] if v is not None)
def to_fp32(self): # For attention mask, only convert fp16 to fp32, and keep the original type if it is integer. attention_mask = None if self.attention_mask is not None: attention_mask = ( self.attention_mask.to(dtype=torch.float32) if (self.attention_mask.dtype == torch.float16) else self.attention_mask )
past = [p.to(dtype=torch.float32) for p in self.past] return Gpt2Inputs(self.input_ids, self.position_ids, attention_mask, past)
class Gpt2Helper: """A helper class for Gpt2 model conversion, inference and verification."""
@staticmethod def get_dummy_inputs( batch_size: int, past_sequence_length: int, sequence_length: int, num_attention_heads: int, hidden_size: int, num_layer: int, vocab_size: int, device: torch.device, float16: bool = False, has_position_ids: bool = True, has_attention_mask: bool = True, input_ids_dtype: torch.dtype = torch.int32, position_ids_dtype: torch.dtype = torch.int32, attention_mask_dtype: torch.dtype = torch.int32, left_side_padding: bool = True, ) -> Gpt2Inputs: """Create random inputs for GPT2 model.
Returns torch tensors of input_ids, position_ids, attention_mask and a list of past state tensors. """
float_type = torch.float16 if float16 else torch.float32 past_shape = [ 2, batch_size, num_attention_heads, past_sequence_length, int(hidden_size / num_attention_heads), ]
past = [(torch.rand(past_shape, dtype=float_type, device=device) * 2.0 - 1.0) for _ in range(num_layer)] input_ids = torch.randint( low=0, high=vocab_size - 1, size=(batch_size, sequence_length), dtype=input_ids_dtype, device=device, )
attention_mask = None if has_attention_mask: total_sequence_length = past_sequence_length + sequence_length attention_mask = torch.ones( [batch_size, total_sequence_length], dtype=attention_mask_dtype, device=device, )
if total_sequence_length >= 2: for i in range(batch_size): padding_length = random.randint(0, total_sequence_length - 1) if left_side_padding: attention_mask[i, :padding_length] = 0 else: # right side padding attention_mask[i, total_sequence_length - padding_length :] = 0
# Deduce position_ids from attention mask position_ids = None if has_position_ids: position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(position_ids < 0, 0) position_ids = position_ids[:, past_sequence_length:].to(position_ids_dtype)
return Gpt2Inputs(input_ids, position_ids, attention_mask, past)
@staticmethod def get_output_shapes( batch_size: int, past_sequence_length: int, sequence_length: int, config: GPT2Config, model_class: str = "GPT2LMHeadModel", ) -> Dict[str, List[int]]: """Returns a dictionary with output name as key, and shape as value.""" num_attention_heads = config.num_attention_heads hidden_size = config.hidden_size num_layer = config.num_hidden_layers vocab_size = config.vocab_size
output_name = MODEL_CLASSES[model_class][1]
last_state_shape = [ batch_size, sequence_length, vocab_size if output_name == "logits" else hidden_size, ] present_state_shape = [ 2, batch_size, num_attention_heads, past_sequence_length + sequence_length, int(hidden_size / num_attention_heads), ]
output_shapes = {output_name: last_state_shape} for i in range(num_layer): output_shapes["present_" + str(i)] = present_state_shape
return output_shapes
@staticmethod def auto_increase_buffer_size(output_buffers, output_shapes): for key in output_shapes: assert key in output_buffers buffer = output_buffers[key] if numpy.prod(output_shapes[key]) > buffer.nelement(): output_buffers[key] = torch.empty( numpy.prod(output_shapes[key]), dtype=buffer.dtype, device=buffer.device, )
@staticmethod def get_output_buffers(output_shapes, device, is_float16=False): """Returns a dictionary of output name as key, and 1D tensor as value. The tensor has enough space for given shape.""" data_type = torch.float16 if is_float16 else torch.float32
output_buffers = {} for name, shape in output_shapes.items(): output_buffers[name] = torch.empty(numpy.prod(shape), dtype=data_type, device=device) return output_buffers
@staticmethod def diff_outputs(torch_outputs, ort_outputs, relative=False): """Returns the maximum difference between PyTorch and OnnxRuntime outputs.""" expected_outputs = torch_outputs[0].cpu().numpy() diff = numpy.abs(expected_outputs - ort_outputs[0]) if relative: return numpy.amax(diff / (numpy.abs(expected_outputs) + 1e-6)) else: return numpy.amax(diff)
@staticmethod def compare_outputs(torch_outputs, ort_outputs, rtol=1e-03, atol=1e-03, **kwargs): """Returns True if torch and ORT outputs are close for given thresholds, and False otherwise.
Note: need kwargs since Gpt2BeamSearchHelper.compare_outputs has an extra parameter model_class """
is_close = numpy.allclose(ort_outputs[0], torch_outputs[0].cpu().numpy(), rtol=rtol, atol=atol) logger.debug(f"PyTorch and OnnxRuntime output 0 (last_state) are close: {is_close}")
is_all_close = is_close num_layers = len(ort_outputs) - 1
for layer in range(num_layers): is_close = numpy.allclose( ort_outputs[1 + layer], torch_outputs[1][layer].cpu().numpy(), rtol=rtol, atol=atol, ) logger.debug(f"PyTorch and OnnxRuntime layer {layer} state (present_{layer}) are close:{is_close}") is_all_close = is_all_close and is_close
if not is_all_close: max_abs_diff = Gpt2Helper.diff_outputs(torch_outputs, ort_outputs) logger.info(f"PyTorch and OnnxRuntime results are not all close: max_abs_diff={max_abs_diff:.5f}")
return is_all_close
@staticmethod def compare_outputs_v2(torch_outputs, ort_outputs, atol=1e-06): """Compare outputs from PyTorch and OnnxRuntime
Args: torch_outputs (Tuple[Torch.Tensor]): PyTorch model output ort_outputs (List[numpy.ndarray]): OnnxRuntime output atol (float, optional): Absolute tollerance. Defaults to 1e-06.
Returns: is_all_close(bool): whether all elements are close. max_abs_diff(float): maximum absolute difference. messages(str): a list of debug message for each output """
is_all_close = True is_top1_matched = False max_diffs = [] messages = [] for i in range(len(ort_outputs)): ort_output = ort_outputs[i] torch_output = (torch_outputs[0] if i == 0 else torch_outputs[1][i - 1]).cpu().numpy() is_close = numpy.allclose(ort_output, torch_output, atol=atol, rtol=0) max_diffs.append(numpy.amax(numpy.abs(torch_output - ort_output))) is_all_close = is_all_close and is_close
if numpy.isnan(torch_output).any(): logger.debug(f"PyTorch output {i} has nan") if numpy.isinf(torch_output).any(): logger.debug(f"PyTorch output {i} has inf") if numpy.isnan(ort_output).any(): logger.debug(f"ORT output {i} has nan") if numpy.isinf(ort_output).any(): logger.debug(f"ORT output {i} has inf")
diff = numpy.fabs(ort_output - torch_output) idx = numpy.unravel_index(diff.argmax(), diff.shape) messages.append( f"diff={diff[idx]:.9f} index={idx} ort={ort_output[idx]:.9f} torch={float(torch_output[idx]):.9f}" )
if i == 0: # logits ort_max_index = numpy.unravel_index(numpy.argmax(ort_output, axis=None), ort_output.shape) torch_max_index = numpy.unravel_index(numpy.argmax(torch_output, axis=None), torch_output.shape) is_top1_matched = numpy.array_equal(ort_max_index, torch_max_index)
max_diff_output_index = max_diffs.index(max(max_diffs)) return ( is_all_close, max(max_diffs), max_diff_output_index, messages, is_top1_matched, )
@staticmethod def export_onnx( model, device, onnx_model_path: str, verbose: bool = False, use_external_data_format: bool = False, has_position_ids: bool = True, has_attention_mask: bool = True, input_ids_dtype: torch.dtype = torch.int32, position_ids_dtype: torch.dtype = torch.int32, attention_mask_dtype: torch.dtype = torch.int32, ): """Export GPT-2 model with past state to ONNX model.""" config: GPT2Config = model.config num_layer = config.n_layer dummy_inputs = Gpt2Helper.get_dummy_inputs( batch_size=1, past_sequence_length=1, sequence_length=1, num_attention_heads=config.num_attention_heads, hidden_size=config.hidden_size, num_layer=num_layer, vocab_size=config.vocab_size, device=device, float16=False, has_position_ids=has_position_ids, has_attention_mask=has_attention_mask, input_ids_dtype=input_ids_dtype, position_ids_dtype=position_ids_dtype, attention_mask_dtype=attention_mask_dtype, ) input_list = dummy_inputs.to_list()
with torch.no_grad(): outputs = model(*input_list)
past_names = [f"past_{i}" for i in range(num_layer)] present_names = [f"present_{i}" for i in range(num_layer)]
# GPT2Model outputs last_state; GPT2LMHeadModel outputs logits (prediction_scores) assert outputs[0].shape[2] == config.vocab_size or outputs[0].shape[2] == config.hidden_size output_names = ["logits" if outputs[0].shape[2] == config.vocab_size else "last_state"] + present_names
# Shape of input tensors: # input_ids: (batch_size, seq_len) # past_{i}: (2, batch_size, num_heads, past_seq_len, hidden_size/num_heads) # attention_mask: (batch_size, past_seq_len + seq_len) # Shape of output tensors: # last_state: (batch_size, seq_len, hidden_size) # or logits: (batch_size, seq_len, vocab_size) # present_{i}: (2, batch_size, num_heads, past_seq_len + seq_len, hidden_size/num_heads) dynamic_axes = { "input_ids": {0: "batch_size", 1: "seq_len"}, output_names[0]: {0: "batch_size", 1: "seq_len"}, } for name in past_names: dynamic_axes[name] = {1: "batch_size", 3: "past_seq_len"} for name in present_names: dynamic_axes[name] = {1: "batch_size", 3: "total_seq_len"}
input_names = ["input_ids"] if has_position_ids: dynamic_axes["position_ids"] = {0: "batch_size", 1: "seq_len"} input_names.append("position_ids") if has_attention_mask: dynamic_axes["attention_mask"] = {0: "batch_size", 1: "total_seq_len"} input_names.append("attention_mask") input_names.extend(past_names)
assert len(outputs) == 2 and len(outputs[1]) == num_layer
logger.info( f"Shapes: input_ids={dummy_inputs.input_ids.shape} past={dummy_inputs.past[0].shape} output={outputs[0].shape} present={outputs[1][0].shape}" )
Path(onnx_model_path).parent.mkdir(parents=True, exist_ok=True)
if use_external_data_format: # We let PyTorch export onnx to a temp directory first, then convert external data to one file. with tempfile.TemporaryDirectory() as tmp_dir_name: temp_onnx_model_path = os.path.join(tmp_dir_name, "gpt2.onnx") Path(temp_onnx_model_path).parent.mkdir(parents=True, exist_ok=True)
torch_onnx_export( model, args=tuple(input_list), f=temp_onnx_model_path, export_params=True, input_names=input_names, output_names=output_names, dynamic_axes=dynamic_axes, opset_version=11, do_constant_folding=True, use_external_data_format=True, verbose=verbose, )
model = onnx.load_model(temp_onnx_model_path, load_external_data=True) OnnxModel.save( model, onnx_model_path, save_as_external_data=True, all_tensors_to_one_file=True, ) else: torch_onnx_export( model, args=tuple(input_list), f=onnx_model_path, export_params=True, input_names=input_names, output_names=output_names, dynamic_axes=dynamic_axes, opset_version=11, do_constant_folding=True, use_external_data_format=False, verbose=verbose, )
@staticmethod def optimize_onnx( onnx_model_path, optimized_model_path, is_float16, num_attention_heads, hidden_size, use_external_data_format=False, auto_mixed_precision=False, stage=0, **kwargs, ): """Optimize ONNX model with an option to convert it to use mixed precision.""" from fusion_options import FusionOptions from optimizer import optimize_model
optimization_options = FusionOptions("gpt2")
# TODO(hasesh): Investigate parity issue for GPT-2 fp16 when SkipLayerNormalization # is enabled if is_float16: optimization_options.enable_skip_layer_norm = False
m = optimize_model( onnx_model_path, model_type="gpt2", num_heads=num_attention_heads, hidden_size=hidden_size, opt_level=0, optimization_options=optimization_options, use_gpu=False, )
if is_float16: if auto_mixed_precision: Gpt2Helper.auto_mixed_precision(m) else: if "keep_io_types" not in kwargs: kwargs["keep_io_types"] = False m.convert_float_to_float16(use_symbolic_shape_infer=True, **kwargs)
m.save_model_to_file(optimized_model_path, use_external_data_format) return m
@staticmethod def auto_mixed_precision( onnx_model: OnnxModel, op_block_list: List[str] = [ "Add", "LayerNormalization", "SkipLayerNormalization", "FastGelu", "EmbedLayerNormalization", ], ): """Convert GPT-2 model to mixed precision.
It detects whether original model has fp16 weights, and set parameters for float16 conversion automatically. Args: onnx_model (OnnxModel): optimized ONNX model op_block_list (List[str], optional): operators to compute in fp32. Defaults to ["Add", "LayerNormalization", "SkipLayerNormalization", "FastGelu", "EmbedLayerNormalization"] Returns: parameters(dict): a dictionary of parameters used in float16 conversion """
op_full_set = set([node.op_type for node in onnx_model.nodes()]) fp32_op_set = set(op_block_list) fp16_op_set = op_full_set.difference(fp32_op_set) logger.info(f"fp32 op: {fp32_op_set} fp16 op: {fp16_op_set}")
# logits is the first output logits_output_name = onnx_model.graph().output[0].name
# We use the weight in last MatMul node to detect whether the model is stored with float16 weights from training. is_weight_fp16_precision = False output_name_to_node = onnx_model.output_name_to_node() assert logits_output_name in output_name_to_node node = output_name_to_node[logits_output_name] last_matmul_node = None if node.op_type == "MatMul": last_matmul_node = node logger.info(f"Found last MatMul node for logits: {node.name}") initializer = None for input in node.input: initializer = onnx_model.get_initializer(input) if initializer is not None: break
# when the max difference of value after converting float to float16 is lower than a threshold (1e-6), # we can deduce that the weights are stored in float16 precision. max_diff = float_to_float16_max_diff(initializer) logger.debug(f"max diff of converting weights in last MatMul node {node.name}: {max_diff}") is_weight_fp16_precision = max_diff < 1e-6 else: logger.warning(f"Failed to find MatMul node for logits. Found {node.op_type} of node {node.name}")
keep_io_types = [] node_block_list = [] if (not is_weight_fp16_precision) and (last_matmul_node is not None): # When original weight is float32 precision, keep logits and last MatMul in float32 could get better precision. keep_io_types = [logits_output_name] node_block_list = [last_matmul_node.name]
parameters = { "keep_io_types": keep_io_types, "op_block_list": op_block_list, "node_block_list": node_block_list, "force_fp16_initializers": is_weight_fp16_precision, }
logger.info(f"auto_mixed_precision parameters: {parameters}") onnx_model.convert_float_to_float16(use_symbolic_shape_infer=True, **parameters)
return parameters
@staticmethod def pytorch_inference(model, inputs: Gpt2Inputs, total_runs: int = 0): """Run inference of PyTorch model, and returns average latency in ms when total_runs > 0 besides outputs.""" logger.debug("start pytorch_inference")
# Convert it to fp32 as the PyTroch model cannot deal with half input. input_list = inputs.to_fp32().to_list()
with torch.no_grad(): outputs = model(*input_list)
if total_runs == 0: return outputs
latency = [] with torch.no_grad(): for _ in range(total_runs): start = time.time() outputs = model(*input_list) latency.append(time.time() - start)
average_latency = sum(latency) * 1000 / len(latency) logger.debug("PyTorch inference time = {} ms".format(format(average_latency, ".2f")))
return outputs, average_latency
@staticmethod def onnxruntime_inference(ort_session, inputs: Gpt2Inputs, total_runs: int = 0): """Run inference of ONNX model, and returns average latency in ms when total_runs > 0 besides outputs.""" logger.debug(f"start onnxruntime_inference")
ort_inputs = {"input_ids": numpy.ascontiguousarray(inputs.input_ids.cpu().numpy())}
if inputs.past is not None: for i, past_i in enumerate(inputs.past): ort_inputs[f"past_{i}"] = numpy.ascontiguousarray(past_i.cpu().numpy())
if inputs.attention_mask is not None: ort_inputs["attention_mask"] = numpy.ascontiguousarray(inputs.attention_mask.cpu().numpy())
if inputs.position_ids is not None: ort_inputs["position_ids"] = numpy.ascontiguousarray(inputs.position_ids.cpu().numpy())
ort_outputs = ort_session.run(None, ort_inputs) if total_runs == 0: return ort_outputs
latency = [] for _ in range(total_runs): start = time.time() ort_outputs = ort_session.run(None, ort_inputs) latency.append(time.time() - start)
average_latency = sum(latency) * 1000 / len(latency) logger.debug("OnnxRuntime Inference time = {} ms".format(format(average_latency, ".2f")))
return ort_outputs, average_latency
@staticmethod def prepare_io_binding( ort_session, input_ids, position_ids, attention_mask, past, output_buffers, output_shapes, ): """Returnas IO binding object for a session.""" return IOBindingHelper.prepare_io_binding( ort_session, input_ids, position_ids, attention_mask, past, output_buffers, output_shapes, )
@staticmethod def get_outputs_from_io_binding_buffer(ort_session, output_buffers, output_shapes, return_numpy=True): """Copy results to cpu. Returns a list of numpy array.""" return IOBindingHelper.get_outputs_from_io_binding_buffer( ort_session, output_buffers, output_shapes, return_numpy )
@staticmethod def onnxruntime_inference_with_binded_io( ort_session, inputs: Gpt2Inputs, output_buffers: Dict[str, torch.Tensor], output_shapes: Dict[str, List[int]], total_runs: int = 0, return_numpy: bool = True, include_copy_output_latency: bool = False, ): """Inference with IO binding. Returns outputs, and optional latency when total_runs > 0.""" logger.debug(f"start onnxruntime_inference_with_binded_io")
# Bind inputs and outputs to onnxruntime session io_binding = Gpt2Helper.prepare_io_binding( ort_session, inputs.input_ids, inputs.position_ids, inputs.attention_mask, inputs.past, output_buffers, output_shapes, )
# Run onnxruntime with io binding ort_session.run_with_iobinding(io_binding)
# Copy results to cpu for verification ort_outputs = Gpt2Helper.get_outputs_from_io_binding_buffer( ort_session, output_buffers, output_shapes, return_numpy )
if total_runs == 0: return ort_outputs
latency = [] for _ in range(total_runs): start = time.time() # Run onnxruntime with io binding ort_session.run_with_iobinding(io_binding) if include_copy_output_latency: _ = Gpt2Helper.get_outputs_from_io_binding_buffer( ort_session, output_buffers, output_shapes, return_numpy ) latency.append(time.time() - start)
average_latency = sum(latency) * 1000 / len(latency) logger.debug("OnnxRuntime with IO binding inference time = {} ms".format(format(average_latency, ".2f")))
return ort_outputs, average_latency
@staticmethod def save_outputs(i, ort_outputs, torch_outputs): with open(f"ort_outputs_{i}.pickle", "wb") as f: pickle.dump(ort_outputs, f) logger.info(f"ORT output are saved to ort_outputs_{i}.pickle")
with open(f"torch_outputs_{i}.pickle", "wb") as f: pickle.dump(torch_outputs, f) logger.info(f"Torch output are saved to torch_outputs_{i}.pickle")
@staticmethod def save_inputs(i, dummy_inputs, ort_outputs, torch_outputs): with open(f"dummy_inputs_{i}.pickle", "wb") as f: pickle.dump(dummy_inputs, f) logger.info(f"inputs are saved to dummy_inputs_{i}.pickle")
@staticmethod def test_parity( ort_session, model, device, is_float16=False, rtol=5e-4, atol=5e-4, test_cases_per_run=10000, total_runs=1, use_io_binding=True, model_class="GPT2LMHeadModel", has_position_ids=True, has_attention_mask=True, input_ids_dtype=torch.int32, position_ids_dtype=torch.int32, attention_mask_dtype=torch.int32, stage=0, verbose=False, enable_pickle_output=False, ): """Generate random inputs and compare the results of PyTorch and Onnx Runtime."""
config: GPT2Config = model.config
logger.info( f"Running parity test (atol={atol}, test_cases={test_cases_per_run}, runs={total_runs}, use_io_binding={use_io_binding}, model_class={model_class}, is_float16={is_float16}) ..." )
max_batch_size = 8 max_past_seq_len = 4 # Do not use large number here for higher chance of hitting empty past (past_seq_len=0) max_seq_len = 2
output_buffers = None if use_io_binding: max_output_shapes = Gpt2Helper.get_output_shapes( max_batch_size, max_past_seq_len, max_seq_len, config, model_class ) output_buffers = Gpt2Helper.get_output_buffers(max_output_shapes, device, is_float16)
passed_test_cases = 0 top1_matched_cases = 0
max_abs_diff_list = [] top1_matched_cases_per_run = [0] * total_runs total_test_cases = test_cases_per_run * total_runs for i in range(total_test_cases): run_id = int(i / test_cases_per_run) sequence_length = random.randint(1, max_seq_len) past_sequence_length = 0 if (stage == 1) else random.randint(0, max_past_seq_len) batch_size = random.randint(1, max_batch_size)
logger.debug( f"Running parity test for batch_size={batch_size} past_sequence_length={past_sequence_length}..." ) dummy_inputs = Gpt2Helper.get_dummy_inputs( batch_size, past_sequence_length, sequence_length, config.num_attention_heads, config.hidden_size, config.n_layer, config.vocab_size, device, is_float16, has_position_ids, has_attention_mask, input_ids_dtype=input_ids_dtype, position_ids_dtype=position_ids_dtype, attention_mask_dtype=attention_mask_dtype, left_side_padding=True, ) outputs = Gpt2Helper.pytorch_inference(model, dummy_inputs) if use_io_binding: ort_outputs = Gpt2Helper.onnxruntime_inference(ort_session, dummy_inputs) else: output_shapes = Gpt2Helper.get_output_shapes( batch_size, past_sequence_length, sequence_length, config, model_class, ) ort_outputs = Gpt2Helper.onnxruntime_inference_with_binded_io( ort_session, dummy_inputs, output_buffers, output_shapes )
( is_all_close, max_abs_diff, max_diff_output_index, messages, is_top1_matched, ) = Gpt2Helper.compare_outputs_v2(outputs, ort_outputs, atol=atol) if not numpy.isnan(max_abs_diff): max_abs_diff_list.append(max_abs_diff) if is_all_close: passed_test_cases += 1
if is_top1_matched: top1_matched_cases += 1 top1_matched_cases_per_run[run_id] += 1
if verbose and not is_all_close: logger.info( f"test_case={i} batch_size={batch_size} past_sequence_length={past_sequence_length} sequence_length={sequence_length} MaxDiff={max_abs_diff}" ) for i, message in enumerate(messages): logger.info(f"\t{i}: Name={ort_session.get_outputs()[i].name}, {message}")
# Collect data for debugging if enable_pickle_output and (numpy.isnan(max_abs_diff) or max_abs_diff > 100 * atol): Gpt2Helper.save_inputs(i, dummy_inputs) Gpt2Helper.save_outputs(i, ort_outputs, outputs)
if max_abs_diff_list: result = { f"max_diff_percentile_{p}": "{:.5f}".format(numpy.percentile(max_abs_diff_list, p)) for p in [50, 90, 95, 99] } else: result = {f"max_diff_percentile_{p}": "nan" for p in [50, 90, 95, 99]}
result["top1_match_rate"] = top1_matched_cases * 1.0 / total_test_cases result["top1_match_rate_per_run"] = [x * 1.0 / test_cases_per_run for x in top1_matched_cases_per_run] result["diff_pass_rate"] = passed_test_cases * 1.0 / total_test_cases result["nan_rate"] = (total_test_cases - len(max_abs_diff_list)) * 1.0 / total_test_cases
logger.info( f"Parity Test Cases={total_test_cases}; Passed={passed_test_cases}; Nan={total_test_cases-len(max_abs_diff_list)}; Top1_Matched={top1_matched_cases}" )
if passed_test_cases > 0.95 * total_test_cases: logger.info(f"Parity is good: passed rate={int(passed_test_cases*100/total_test_cases):.0f}%")
return result
@staticmethod def test_performance( ort_session, model, device, is_float16=False, total_runs=100, use_io_binding=True, model_class="GPT2LMHeadModel", has_position_ids=True, has_attention_mask=True, input_ids_dtype=torch.int32, position_ids_dtype=torch.int32, attention_mask_dtype=torch.int32, batch_size=8, sequence_length=1, past_sequence_length=32, ): """Generate random inputs and measure average latency of Onnx Runtime."""
config: GPT2Config = model.config
output_buffers = None if use_io_binding: output_shapes = Gpt2Helper.get_output_shapes( batch_size, past_sequence_length, sequence_length, config, model_class ) output_buffers = Gpt2Helper.get_output_buffers(output_shapes, device, is_float16)
dummy_inputs = Gpt2Helper.get_dummy_inputs( batch_size, past_sequence_length, sequence_length, config.num_attention_heads, config.hidden_size, config.n_layer, config.vocab_size, device, is_float16, has_position_ids, has_attention_mask, input_ids_dtype=input_ids_dtype, position_ids_dtype=position_ids_dtype, attention_mask_dtype=attention_mask_dtype, )
if use_io_binding: _, latency = Gpt2Helper.onnxruntime_inference(ort_session, dummy_inputs, total_runs) else: _, latency = Gpt2Helper.onnxruntime_inference_with_binded_io( ort_session, dummy_inputs, output_buffers, output_shapes, total_runs )
return latency
@staticmethod def torchscript(model, config, device, has_position_ids=True, has_attention_mask=True): """JIT trace for TorchScript.""" input_list = Gpt2Helper.get_dummy_inputs( batch_size=1, past_sequence_length=1, sequence_length=1, num_attention_heads=config.num_attention_heads, hidden_size=config.hidden_size, num_layer=config.n_layer, vocab_size=config.vocab_size, device=device, float16=False, has_position_ids=has_position_ids, has_attention_mask=has_attention_mask, ).to_list() return torch.jit.trace(model, input_list)
@staticmethod def get_onnx_paths( output_dir, model_name_or_path, model_class: str = "GPT2LMHeadModel", has_past=True, new_folder=False, remove_existing=["raw", "fp32", "fp16", "int8"], ): """Build a path name for given model based on given attributes.""" model_name = model_name_or_path if os.path.isdir(model_name_or_path): model_name = Path(model_name_or_path).parts[-1] else: model_name.split("/")[-1]
if model_class != "GPT2LMHeadModel": model_name += "_" + model_class
if has_past: model_name += "_past"
if new_folder: suffix = {"raw": "", "fp32": "_fp32", "fp16": "_fp16", "int8": "_int8"} # Remove the directories if existed. for model_type in ["raw", "fp32", "fp16", "int8"]: new_dir = os.path.join(output_dir, model_name + suffix[model_type]) if os.path.exists(new_dir): if model_type in remove_existing: try: shutil.rmtree(new_dir) logger.info(f"Removed the existed directory: {new_dir}") except OSError as e: logger.info(f"Failed to remove the directory {new_dir}: {e.strerror}") else: logger.info(f"Directory for {model_type} existed: {new_dir}")
# store each model to its own directory (for external data format). return { "raw": os.path.join(os.path.join(output_dir, model_name), model_name + ".onnx"), "fp32": os.path.join( os.path.join(output_dir, model_name + "_fp32"), model_name + "_fp32.onnx", ), "fp16": os.path.join( os.path.join(output_dir, model_name + "_fp16"), model_name + "_fp16.onnx", ), "int8": os.path.join( os.path.join(output_dir, model_name + "_int8"), model_name + "_int8.onnx", ), }
return { "raw": os.path.join(output_dir, model_name + ".onnx"), "fp32": os.path.join(output_dir, model_name + "_fp32.onnx"), "fp16": os.path.join(output_dir, model_name + "_fp16.onnx"), "int8": os.path.join(output_dir, model_name + "_int8.onnx"), }
|