|
|
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. # -------------------------------------------------------------------------- import logging
from fusion_attention import AttentionMask, FusionAttention from fusion_reshape import FusionReshape from onnx import numpy_helper from onnx_model import OnnxModel from onnx_model_bert import BertOnnxModel
logger = logging.getLogger(__name__)
class FusionBartEncoderAttention(FusionAttention): """
Fuse Bart Attention subgraph into one Attention node. """
def __init__( self, model: OnnxModel, hidden_size: int, num_heads: int, attention_mask: AttentionMask, ): super().__init__(model, hidden_size, num_heads, attention_mask)
def check_runtime_shape_path( self, reshape_qkv_2, reshape_qkv_1, reshape_q_2, reshape_k_2, reshape_v_2, root_input, ): concat_qkv_2_path = self.model.match_parent_path(reshape_qkv_2, ["Concat"], [1]) if concat_qkv_2_path is None: return False concat_qkv_2 = concat_qkv_2_path[0]
reshape_qkv_2_path_1 = self.model.match_parent_path(concat_qkv_2, ["Unsqueeze", "Gather", "Shape"], [0, 0, 0]) reshape_qkv_2_path_2 = self.model.match_parent_path(concat_qkv_2, ["Unsqueeze", "Gather", "Shape"], [1, 0, 0]) reshape_qkv_2_path_3 = self.model.match_parent_path(concat_qkv_2, ["Unsqueeze", "Gather", "Shape"], [2, 0, 0]) if reshape_qkv_2_path_1 is None or reshape_qkv_2_path_2 is None or reshape_qkv_2_path_3 is None: return False
_, gather_1, shape_1 = reshape_qkv_2_path_1 _, gather_2, shape_2 = reshape_qkv_2_path_2 _, _, shape_3 = reshape_qkv_2_path_3
if shape_1.input[0] != root_input or shape_2.input[0] != root_input or shape_3.input[0] != root_input: return False
reshape_qkv_1_path_1 = self.model.match_parent_path(reshape_qkv_1, ["Concat", "Unsqueeze", "Gather"], [1, 0, 0]) reshape_qkv_1_path_2 = self.model.match_parent_path(reshape_qkv_1, ["Concat", "Unsqueeze", "Gather"], [1, 2, 0]) if reshape_qkv_1_path_1 is None or reshape_qkv_1_path_2 is None: return False if reshape_qkv_1_path_1[-1].name != gather_1.name or reshape_qkv_1_path_2[-1].name != gather_2.name: return False
reshape_q_2_path = self.model.match_parent_path(reshape_q_2, ["Concat", "Unsqueeze", "Mul"], [1, 0, 0]) reshape_k_2_path = self.model.match_parent_path(reshape_k_2, ["Concat", "Unsqueeze", "Mul"], [1, 0, 0]) reshape_v_2_path = self.model.match_parent_path(reshape_v_2, ["Concat", "Unsqueeze", "Mul"], [1, 0, 0]) if reshape_q_2_path is None or reshape_k_2_path is None or reshape_v_2_path is None: return False
mul_q = reshape_q_2_path[-1] mul_k = reshape_k_2_path[-1] mul_v = reshape_v_2_path[-1]
gather_1_out = gather_1.output[0] if mul_q.input[0] != gather_1_out or mul_k.input[0] != gather_1_out or mul_v.input[0] != gather_1_out: return False
return True
def fuse(self, normalize_node, input_name_to_nodes, output_name_to_node): # SkipLayerNormalization has two inputs, and one of them is the root input for attention. qkv_nodes = self.model.match_parent_path( normalize_node, ["Add", "MatMul", "Reshape", "Transpose", "Reshape", "MatMul"], [None, 1, 0, 0, 0, 0], ) if qkv_nodes is not None: ( add_out, matmul_out, reshape_qkv_2, transpose_qkv, reshape_qkv_1, matmul_qkv, ) = qkv_nodes else: return
other_inputs = [] for i, input in enumerate(normalize_node.input): if input not in output_name_to_node: continue if input == qkv_nodes[0].output[0]: continue other_inputs.append(input) if len(other_inputs) != 1: return
root_input = other_inputs[0] children = input_name_to_nodes[root_input] children_types = [child.op_type for child in children] if children_types.count("MatMul") != 3: return
v_nodes = self.model.match_parent_path( matmul_qkv, ["Reshape", "Transpose", "Reshape", "Add", "MatMul"], [1, 0, 0, 0, None], ) if v_nodes is None: logger.debug("fuse_attention: failed to match v path") return (reshape_v_2, transpose_v, reshape_v_1, add_v, matmul_v) = v_nodes
qk_nodes = self.model.match_parent_path(matmul_qkv, ["Softmax", "MatMul"], [0, 0]) if qk_nodes is not None: _, matmul_qk = qk_nodes else: return
q_nodes = self.model.match_parent_path( matmul_qk, ["Reshape", "Transpose", "Reshape", "Mul", "Add", "MatMul"], [0, 0, 0, 0, 0, 1], ) if q_nodes is not None: reshape_q_2, _, reshape_q_1, _, add_q, matmul_q = q_nodes else: return
k_nodes = self.model.match_parent_path( matmul_qk, ["Transpose", "Reshape", "Transpose", "Reshape", "Add", "MatMul"], [1, 0, 0, 0, 0, 1], ) if k_nodes is not None: _, reshape_k_2, _, reshape_k_1, add_k, matmul_k = k_nodes else: return
if not self.check_runtime_shape_path( reshape_qkv_2, reshape_qkv_1, reshape_q_2, reshape_k_2, reshape_v_2, root_input, ): return
if matmul_v.input[0] == root_input and matmul_q.input[0] == root_input and matmul_v.input[0] == root_input:
mask_nodes = [] mask_index = None attention_last_node = reshape_qkv_2
num_heads, hidden_size = self.get_num_heads_and_hidden_size(reshape_q_1)
if num_heads <= 0 or hidden_size <= 0 or (hidden_size % num_heads) != 0: logger.debug("fuse_attention: failed to detect num_heads or hidden_size") return
new_node = self.create_attention_node( mask_index, matmul_q, matmul_k, matmul_v, add_q, add_k, add_v, num_heads, hidden_size, root_input, attention_last_node.output[0], None, ) if new_node is None: return
self.nodes_to_add.append(new_node) self.node_name_to_graph_name[new_node.name] = self.this_graph_name
self.nodes_to_remove.extend([attention_last_node, transpose_qkv, matmul_qkv]) self.nodes_to_remove.extend(qk_nodes) self.nodes_to_remove.extend(q_nodes) self.nodes_to_remove.extend(k_nodes) self.nodes_to_remove.extend(v_nodes)
# Use prune graph to remove mask nodes since they are shared by all attention nodes. self.nodes_to_remove.extend(mask_nodes) self.prune_graph = True
class FusionBartReshape(FusionReshape): def __init__(self, model: OnnxModel): super().__init__(model)
def fuse(self, reshape_node, input_name_to_nodes, output_name_to_node): if reshape_node.input[1] not in output_name_to_node: return
concat_node = output_name_to_node[reshape_node.input[1]] if concat_node.op_type != "Concat" or len(concat_node.input) != 4: return
path0 = self.model.match_parent_path( concat_node, ["Unsqueeze", "Gather", "Shape"], [0, 0, 0], output_name_to_node, ) if path0 is None: return
(_, gather_0, shape_0) = path0
shape = [] gather_value = self.model.get_constant_value(gather_0.input[1]) if gather_value == 0: shape.append(0)
path1 = self.model.match_parent_path( concat_node, ["Unsqueeze", "Gather", "Shape"], [1, 0, 0], output_name_to_node, ) if path1 is None: input_1_proto = self.model.get_initializer(concat_node.input[1]) input_2_proto = self.model.get_initializer(concat_node.input[2]) input_3_proto = self.model.get_initializer(concat_node.input[3]) if input_1_proto is None or input_2_proto is None or input_3_proto is None: return
input_1 = numpy_helper.to_array(input_1_proto) input_2 = numpy_helper.to_array(input_2_proto) input_3 = numpy_helper.to_array(input_3_proto) if len(input_1) != 1 or len(input_2) != 1 or len(input_3) != 1: return
if not (input_1[0] == -1 and input_2[0] > 0 and input_3[0] > 0): return
shape.extend(input_1) shape.extend(input_2) shape.extend(input_3) gemm_path = self.model.match_parent_path(reshape_node, ["Add", "MatMul"], [0, 1], output_name_to_node) if gemm_path is None: return
top_matmul = gemm_path[-1] root_input = top_matmul.input[0] if shape_0.input[0] != root_input: return
self.replace_reshape_node(shape, reshape_node, concat_node) else: (_, gather_1, shape_1) = path1
gather_value = self.model.get_constant_value(gather_1.input[1]) if gather_value == 1: shape.append(0)
input_2_proto = self.model.get_initializer(concat_node.input[2]) input_3_proto = self.model.get_initializer(concat_node.input[3]) if input_2_proto is None or input_3_proto is None: return
input_2 = numpy_helper.to_array(input_2_proto) input_3 = numpy_helper.to_array(input_3_proto) if len(input_2) != 1 or len(input_3) != 1: return
if not (input_2[0] > 0 and input_3[0] > 0): return
shape.extend(input_2) shape.extend(input_3) gemm_path = self.model.match_parent_path( reshape_node, ["Mul", "Add", "MatMul"], [0, 0, 1], output_name_to_node ) if gemm_path is None: return
top_matmul = gemm_path[-1] root_input = top_matmul.input[0] if shape_0.input[0] != root_input or shape_1.input[0] != root_input: return
self.replace_reshape_node(shape, reshape_node, concat_node)
class BartOnnxModel(BertOnnxModel): def __init__(self, model, num_heads, hidden_size): super().__init__(model, num_heads, hidden_size) self.attention_mask = AttentionMask(self) self.attention_fusion = FusionBartEncoderAttention(self, self.hidden_size, self.num_heads, self.attention_mask) self.bart_reshape_fusion_preprocess = FusionBartReshape(self)
def fuse_attention(self): self.attention_fusion.apply()
def preprocess(self): self.adjust_reshape_and_expand() self.bart_reshape_fusion_preprocess.apply()
|