|
|
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. # --------------------------------------------------------------------------
from logging import getLogger from typing import Optional
from fusion_attention_unet import FusionAttentionUnet from fusion_biassplitgelu import FusionBiasSplitGelu from fusion_group_norm import FusionGroupNorm from fusion_nhwc_conv import FusionNhwcConv from fusion_options import FusionOptions from fusion_transpose import FusionTranspose from onnx import ModelProto from onnx_model import OnnxModel from onnx_model_bert import BertOnnxModel
logger = getLogger(__name__)
class UnetOnnxModel(BertOnnxModel): def __init__(self, model: ModelProto, num_heads: int = 0, hidden_size: int = 0): """Initialize UNet ONNX Model.
Args: model (ModelProto): the ONNX model num_heads (int, optional): number of attention heads. Defaults to 0 (detect the parameter automatically). hidden_size (int, optional): hidden dimension. Defaults to 0 (detect the parameter automatically). """
assert (num_heads == 0 and hidden_size == 0) or (num_heads > 0 and hidden_size % num_heads == 0)
super().__init__(model, num_heads=num_heads, hidden_size=hidden_size)
def preprocess(self): self.remove_useless_div()
def postprocess(self): self.merge_sequential_transpose() self.prune_graph() self.remove_unused_constant()
def remove_useless_div(self): """Remove Div by 1""" div_nodes = [node for node in self.nodes() if node.op_type == "Div"]
nodes_to_remove = [] for div in div_nodes: if self.find_constant_input(div, 1.0) == 1: nodes_to_remove.append(div)
for node in nodes_to_remove: self.replace_input_of_all_nodes(node.output[0], node.input[0])
if nodes_to_remove: self.remove_nodes(nodes_to_remove) logger.info("Removed %d useless Div (by 1) nodes", len(nodes_to_remove))
def convert_conv_to_nhwc(self): # Do not update weight here since save external data has a bug conv_to_nhwc_conv = FusionNhwcConv(self, update_weight=False) conv_to_nhwc_conv.apply()
def merge_sequential_transpose(self): fusion_transpose = FusionTranspose(self) fusion_transpose.apply()
remove_count = 0 nodes = self.get_nodes_by_op_type("Transpose") for node in nodes: permutation = OnnxModel.get_node_attribute(node, "perm") assert isinstance(permutation, list) if permutation != list(range(len(permutation))): continue assert not ( self.find_graph_output(node.output[0]) or self.find_graph_input(node.input[0]) or self.find_graph_output(node.input[0]) )
# Let all children nodes skip current Transpose node and link to its parent # Note that we cannot update parent node output since parent node might have more than one children. self.replace_input_of_all_nodes(node.output[0], node.input[0])
self.remove_node(node) remove_count += 1
total = len(fusion_transpose.nodes_to_remove) + remove_count if total: logger.info("Removed %d Transpose nodes", total)
def optimize(self, options: Optional[FusionOptions] = None): if (options is not None) and not options.enable_shape_inference: self.disable_shape_inference()
self.utils.remove_identity_nodes()
# Remove cast nodes that having same data type of input and output based on symbolic shape inference. self.utils.remove_useless_cast_nodes()
if (options is None) or options.enable_layer_norm: self.fuse_layer_norm()
if (options is None) or options.enable_gelu: self.fuse_gelu()
self.preprocess()
self.fuse_reshape()
if (options is None) or options.enable_group_norm: group_norm_fusion = FusionGroupNorm(self) group_norm_fusion.apply()
if (options is None) or options.enable_bias_splitgelu: bias_split_gelu_fusion = FusionBiasSplitGelu(self) bias_split_gelu_fusion.apply()
if (options is None) or options.enable_attention: self_attention_fusion = FusionAttentionUnet(self, self.hidden_size, self.num_heads, False, False) self_attention_fusion.apply()
enable_packed_kv = (options is None) or options.enable_packed_kv cross_attention_fusion = FusionAttentionUnet(self, self.hidden_size, self.num_heads, True, enable_packed_kv) cross_attention_fusion.apply()
if (options is None) or options.enable_skip_layer_norm: self.fuse_skip_layer_norm()
self.fuse_shape()
# Remove reshape nodes that having same shape of input and output based on symbolic shape inference. self.utils.remove_useless_reshape_nodes()
self.convert_conv_to_nhwc()
if (options is None) or options.enable_bias_skip_layer_norm: # Fuse SkipLayerNormalization and Add Bias before it. self.fuse_add_bias_skip_layer_norm()
if options is not None and options.enable_gelu_approximation: self.gelu_approximation()
self.postprocess()
logger.info(f"opset version: {self.get_opset_version()}")
def get_fused_operator_statistics(self): """
Returns node count of fused operators. """
op_count = {} ops = [ "Attention", "MultiHeadAttention", "Gelu", "FastGelu", "LayerNormalization", "SkipLayerNormalization", "BiasSplitGelu", "GroupNorm", "NhwcConv", ] for op in ops: nodes = self.get_nodes_by_op_type(op) op_count[op] = len(nodes)
logger.info(f"Optimized operators:{op_count}") return op_count
|