|
|
from sympy.assumptions import Predicate from sympy.multipledispatch import Dispatcher
class SquarePredicate(Predicate): """
Square matrix predicate.
Explanation ===========
``Q.square(x)`` is true iff ``x`` is a square matrix. A square matrix is a matrix with the same number of rows and columns.
Examples ========
>>> from sympy import Q, ask, MatrixSymbol, ZeroMatrix, Identity >>> X = MatrixSymbol('X', 2, 2) >>> Y = MatrixSymbol('X', 2, 3) >>> ask(Q.square(X)) True >>> ask(Q.square(Y)) False >>> ask(Q.square(ZeroMatrix(3, 3))) True >>> ask(Q.square(Identity(3))) True
References ==========
.. [1] https://en.wikipedia.org/wiki/Square_matrix
"""
name = 'square' handler = Dispatcher("SquareHandler", doc="Handler for Q.square.")
class SymmetricPredicate(Predicate): """
Symmetric matrix predicate.
Explanation ===========
``Q.symmetric(x)`` is true iff ``x`` is a square matrix and is equal to its transpose. Every square diagonal matrix is a symmetric matrix.
Examples ========
>>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 2, 2) >>> Y = MatrixSymbol('Y', 2, 3) >>> Z = MatrixSymbol('Z', 2, 2) >>> ask(Q.symmetric(X*Z), Q.symmetric(X) & Q.symmetric(Z)) True >>> ask(Q.symmetric(X + Z), Q.symmetric(X) & Q.symmetric(Z)) True >>> ask(Q.symmetric(Y)) False
References ==========
.. [1] https://en.wikipedia.org/wiki/Symmetric_matrix
"""
# TODO: Add handlers to make these keys work with # actual matrices and add more examples in the docstring. name = 'symmetric' handler = Dispatcher("SymmetricHandler", doc="Handler for Q.symmetric.")
class InvertiblePredicate(Predicate): """
Invertible matrix predicate.
Explanation ===========
``Q.invertible(x)`` is true iff ``x`` is an invertible matrix. A square matrix is called invertible only if its determinant is 0.
Examples ========
>>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 2, 2) >>> Y = MatrixSymbol('Y', 2, 3) >>> Z = MatrixSymbol('Z', 2, 2) >>> ask(Q.invertible(X*Y), Q.invertible(X)) False >>> ask(Q.invertible(X*Z), Q.invertible(X) & Q.invertible(Z)) True >>> ask(Q.invertible(X), Q.fullrank(X) & Q.square(X)) True
References ==========
.. [1] https://en.wikipedia.org/wiki/Invertible_matrix
"""
name = 'invertible' handler = Dispatcher("InvertibleHandler", doc="Handler for Q.invertible.")
class OrthogonalPredicate(Predicate): """
Orthogonal matrix predicate.
Explanation ===========
``Q.orthogonal(x)`` is true iff ``x`` is an orthogonal matrix. A square matrix ``M`` is an orthogonal matrix if it satisfies ``M^TM = MM^T = I`` where ``M^T`` is the transpose matrix of ``M`` and ``I`` is an identity matrix. Note that an orthogonal matrix is necessarily invertible.
Examples ========
>>> from sympy import Q, ask, MatrixSymbol, Identity >>> X = MatrixSymbol('X', 2, 2) >>> Y = MatrixSymbol('Y', 2, 3) >>> Z = MatrixSymbol('Z', 2, 2) >>> ask(Q.orthogonal(Y)) False >>> ask(Q.orthogonal(X*Z*X), Q.orthogonal(X) & Q.orthogonal(Z)) True >>> ask(Q.orthogonal(Identity(3))) True >>> ask(Q.invertible(X), Q.orthogonal(X)) True
References ==========
.. [1] https://en.wikipedia.org/wiki/Orthogonal_matrix
"""
name = 'orthogonal' handler = Dispatcher("OrthogonalHandler", doc="Handler for key 'orthogonal'.")
class UnitaryPredicate(Predicate): """
Unitary matrix predicate.
Explanation ===========
``Q.unitary(x)`` is true iff ``x`` is a unitary matrix. Unitary matrix is an analogue to orthogonal matrix. A square matrix ``M`` with complex elements is unitary if :math:``M^TM = MM^T= I`` where :math:``M^T`` is the conjugate transpose matrix of ``M``.
Examples ========
>>> from sympy import Q, ask, MatrixSymbol, Identity >>> X = MatrixSymbol('X', 2, 2) >>> Y = MatrixSymbol('Y', 2, 3) >>> Z = MatrixSymbol('Z', 2, 2) >>> ask(Q.unitary(Y)) False >>> ask(Q.unitary(X*Z*X), Q.unitary(X) & Q.unitary(Z)) True >>> ask(Q.unitary(Identity(3))) True
References ==========
.. [1] https://en.wikipedia.org/wiki/Unitary_matrix
"""
name = 'unitary' handler = Dispatcher("UnitaryHandler", doc="Handler for key 'unitary'.")
class FullRankPredicate(Predicate): """
Fullrank matrix predicate.
Explanation ===========
``Q.fullrank(x)`` is true iff ``x`` is a full rank matrix. A matrix is full rank if all rows and columns of the matrix are linearly independent. A square matrix is full rank iff its determinant is nonzero.
Examples ========
>>> from sympy import Q, ask, MatrixSymbol, ZeroMatrix, Identity >>> X = MatrixSymbol('X', 2, 2) >>> ask(Q.fullrank(X.T), Q.fullrank(X)) True >>> ask(Q.fullrank(ZeroMatrix(3, 3))) False >>> ask(Q.fullrank(Identity(3))) True
"""
name = 'fullrank' handler = Dispatcher("FullRankHandler", doc="Handler for key 'fullrank'.")
class PositiveDefinitePredicate(Predicate): r"""
Positive definite matrix predicate.
Explanation ===========
If $M$ is a :math:`n \times n` symmetric real matrix, it is said to be positive definite if :math:`Z^TMZ` is positive for every non-zero column vector $Z$ of $n$ real numbers.
Examples ========
>>> from sympy import Q, ask, MatrixSymbol, Identity >>> X = MatrixSymbol('X', 2, 2) >>> Y = MatrixSymbol('Y', 2, 3) >>> Z = MatrixSymbol('Z', 2, 2) >>> ask(Q.positive_definite(Y)) False >>> ask(Q.positive_definite(Identity(3))) True >>> ask(Q.positive_definite(X + Z), Q.positive_definite(X) & ... Q.positive_definite(Z)) True
References ==========
.. [1] https://en.wikipedia.org/wiki/Positive-definite_matrix
"""
name = "positive_definite" handler = Dispatcher("PositiveDefiniteHandler", doc="Handler for key 'positive_definite'.")
class UpperTriangularPredicate(Predicate): """
Upper triangular matrix predicate.
Explanation ===========
A matrix $M$ is called upper triangular matrix if :math:`M_{ij}=0` for :math:`i<j`.
Examples ========
>>> from sympy import Q, ask, ZeroMatrix, Identity >>> ask(Q.upper_triangular(Identity(3))) True >>> ask(Q.upper_triangular(ZeroMatrix(3, 3))) True
References ==========
.. [1] http://mathworld.wolfram.com/UpperTriangularMatrix.html
"""
name = "upper_triangular" handler = Dispatcher("UpperTriangularHandler", doc="Handler for key 'upper_triangular'.")
class LowerTriangularPredicate(Predicate): """
Lower triangular matrix predicate.
Explanation ===========
A matrix $M$ is called lower triangular matrix if :math:`M_{ij}=0` for :math:`i>j`.
Examples ========
>>> from sympy import Q, ask, ZeroMatrix, Identity >>> ask(Q.lower_triangular(Identity(3))) True >>> ask(Q.lower_triangular(ZeroMatrix(3, 3))) True
References ==========
.. [1] http://mathworld.wolfram.com/LowerTriangularMatrix.html
"""
name = "lower_triangular" handler = Dispatcher("LowerTriangularHandler", doc="Handler for key 'lower_triangular'.")
class DiagonalPredicate(Predicate): """
Diagonal matrix predicate.
Explanation ===========
``Q.diagonal(x)`` is true iff ``x`` is a diagonal matrix. A diagonal matrix is a matrix in which the entries outside the main diagonal are all zero.
Examples ========
>>> from sympy import Q, ask, MatrixSymbol, ZeroMatrix >>> X = MatrixSymbol('X', 2, 2) >>> ask(Q.diagonal(ZeroMatrix(3, 3))) True >>> ask(Q.diagonal(X), Q.lower_triangular(X) & ... Q.upper_triangular(X)) True
References ==========
.. [1] https://en.wikipedia.org/wiki/Diagonal_matrix
"""
name = "diagonal" handler = Dispatcher("DiagonalHandler", doc="Handler for key 'diagonal'.")
class IntegerElementsPredicate(Predicate): """
Integer elements matrix predicate.
Explanation ===========
``Q.integer_elements(x)`` is true iff all the elements of ``x`` are integers.
Examples ========
>>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 4, 4) >>> ask(Q.integer(X[1, 2]), Q.integer_elements(X)) True
"""
name = "integer_elements" handler = Dispatcher("IntegerElementsHandler", doc="Handler for key 'integer_elements'.")
class RealElementsPredicate(Predicate): """
Real elements matrix predicate.
Explanation ===========
``Q.real_elements(x)`` is true iff all the elements of ``x`` are real numbers.
Examples ========
>>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 4, 4) >>> ask(Q.real(X[1, 2]), Q.real_elements(X)) True
"""
name = "real_elements" handler = Dispatcher("RealElementsHandler", doc="Handler for key 'real_elements'.")
class ComplexElementsPredicate(Predicate): """
Complex elements matrix predicate.
Explanation ===========
``Q.complex_elements(x)`` is true iff all the elements of ``x`` are complex numbers.
Examples ========
>>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 4, 4) >>> ask(Q.complex(X[1, 2]), Q.complex_elements(X)) True >>> ask(Q.complex_elements(X), Q.integer_elements(X)) True
"""
name = "complex_elements" handler = Dispatcher("ComplexElementsHandler", doc="Handler for key 'complex_elements'.")
class SingularPredicate(Predicate): """
Singular matrix predicate.
A matrix is singular iff the value of its determinant is 0.
Examples ========
>>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 4, 4) >>> ask(Q.singular(X), Q.invertible(X)) False >>> ask(Q.singular(X), ~Q.invertible(X)) True
References ==========
.. [1] http://mathworld.wolfram.com/SingularMatrix.html
"""
name = "singular" handler = Dispatcher("SingularHandler", doc="Predicate fore key 'singular'.")
class NormalPredicate(Predicate): """
Normal matrix predicate.
A matrix is normal if it commutes with its conjugate transpose.
Examples ========
>>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 4, 4) >>> ask(Q.normal(X), Q.unitary(X)) True
References ==========
.. [1] https://en.wikipedia.org/wiki/Normal_matrix
"""
name = "normal" handler = Dispatcher("NormalHandler", doc="Predicate fore key 'normal'.")
class TriangularPredicate(Predicate): """
Triangular matrix predicate.
Explanation ===========
``Q.triangular(X)`` is true if ``X`` is one that is either lower triangular or upper triangular.
Examples ========
>>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 4, 4) >>> ask(Q.triangular(X), Q.upper_triangular(X)) True >>> ask(Q.triangular(X), Q.lower_triangular(X)) True
References ==========
.. [1] https://en.wikipedia.org/wiki/Triangular_matrix
"""
name = "triangular" handler = Dispatcher("TriangularHandler", doc="Predicate fore key 'triangular'.")
class UnitTriangularPredicate(Predicate): """
Unit triangular matrix predicate.
Explanation ===========
A unit triangular matrix is a triangular matrix with 1s on the diagonal.
Examples ========
>>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 4, 4) >>> ask(Q.triangular(X), Q.unit_triangular(X)) True
"""
name = "unit_triangular" handler = Dispatcher("UnitTriangularHandler", doc="Predicate fore key 'unit_triangular'.")
|