|
|
"""
Module to evaluate the proposition with assumptions using SAT algorithm. """
from sympy.core.singleton import S from sympy.core.symbol import Symbol from sympy.assumptions.ask_generated import get_all_known_facts from sympy.assumptions.assume import global_assumptions, AppliedPredicate from sympy.assumptions.sathandlers import class_fact_registry from sympy.core import oo from sympy.logic.inference import satisfiable from sympy.assumptions.cnf import CNF, EncodedCNF
def satask(proposition, assumptions=True, context=global_assumptions, use_known_facts=True, iterations=oo): """
Function to evaluate the proposition with assumptions using SAT algorithm.
This function extracts every fact relevant to the expressions composing proposition and assumptions. For example, if a predicate containing ``Abs(x)`` is proposed, then ``Q.zero(Abs(x)) | Q.positive(Abs(x))`` will be found and passed to SAT solver because ``Q.nonnegative`` is registered as a fact for ``Abs``.
Proposition is evaluated to ``True`` or ``False`` if the truth value can be determined. If not, ``None`` is returned.
Parameters ==========
proposition : Any boolean expression. Proposition which will be evaluated to boolean value.
assumptions : Any boolean expression, optional. Local assumptions to evaluate the *proposition*.
context : AssumptionsContext, optional. Default assumptions to evaluate the *proposition*. By default, this is ``sympy.assumptions.global_assumptions`` variable.
use_known_facts : bool, optional. If ``True``, facts from ``sympy.assumptions.ask_generated`` module are passed to SAT solver as well.
iterations : int, optional. Number of times that relevant facts are recursively extracted. Default is infinite times until no new fact is found.
Returns =======
``True``, ``False``, or ``None``
Examples ========
>>> from sympy import Abs, Q >>> from sympy.assumptions.satask import satask >>> from sympy.abc import x >>> satask(Q.zero(Abs(x)), Q.zero(x)) True
"""
props = CNF.from_prop(proposition) _props = CNF.from_prop(~proposition)
assumptions = CNF.from_prop(assumptions)
context_cnf = CNF() if context: context_cnf = context_cnf.extend(context)
sat = get_all_relevant_facts(props, assumptions, context_cnf, use_known_facts=use_known_facts, iterations=iterations) sat.add_from_cnf(assumptions) if context: sat.add_from_cnf(context_cnf)
return check_satisfiability(props, _props, sat)
def check_satisfiability(prop, _prop, factbase): sat_true = factbase.copy() sat_false = factbase.copy() sat_true.add_from_cnf(prop) sat_false.add_from_cnf(_prop) can_be_true = satisfiable(sat_true) can_be_false = satisfiable(sat_false)
if can_be_true and can_be_false: return None
if can_be_true and not can_be_false: return True
if not can_be_true and can_be_false: return False
if not can_be_true and not can_be_false: # TODO: Run additional checks to see which combination of the # assumptions, global_assumptions, and relevant_facts are # inconsistent. raise ValueError("Inconsistent assumptions")
def extract_predargs(proposition, assumptions=None, context=None): """
Extract every expression in the argument of predicates from *proposition*, *assumptions* and *context*.
Parameters ==========
proposition : sympy.assumptions.cnf.CNF
assumptions : sympy.assumptions.cnf.CNF, optional.
context : sympy.assumptions.cnf.CNF, optional. CNF generated from assumptions context.
Examples ========
>>> from sympy import Q, Abs >>> from sympy.assumptions.cnf import CNF >>> from sympy.assumptions.satask import extract_predargs >>> from sympy.abc import x, y >>> props = CNF.from_prop(Q.zero(Abs(x*y))) >>> assump = CNF.from_prop(Q.zero(x) & Q.zero(y)) >>> extract_predargs(props, assump) {x, y, Abs(x*y)}
"""
req_keys = find_symbols(proposition) keys = proposition.all_predicates() # XXX: We need this since True/False are not Basic lkeys = set() if assumptions: lkeys |= assumptions.all_predicates() if context: lkeys |= context.all_predicates()
lkeys = lkeys - {S.true, S.false} tmp_keys = None while tmp_keys != set(): tmp = set() for l in lkeys: syms = find_symbols(l) if (syms & req_keys) != set(): tmp |= syms tmp_keys = tmp - req_keys req_keys |= tmp_keys keys |= {l for l in lkeys if find_symbols(l) & req_keys != set()}
exprs = set() for key in keys: if isinstance(key, AppliedPredicate): exprs |= set(key.arguments) else: exprs.add(key) return exprs
def find_symbols(pred): """
Find every :obj:`~.Symbol` in *pred*.
Parameters ==========
pred : sympy.assumptions.cnf.CNF, or any Expr.
"""
if isinstance(pred, CNF): symbols = set() for a in pred.all_predicates(): symbols |= find_symbols(a) return symbols return pred.atoms(Symbol)
def get_relevant_clsfacts(exprs, relevant_facts=None): """
Extract relevant facts from the items in *exprs*. Facts are defined in ``assumptions.sathandlers`` module.
This function is recursively called by ``get_all_relevant_facts()``.
Parameters ==========
exprs : set Expressions whose relevant facts are searched.
relevant_facts : sympy.assumptions.cnf.CNF, optional. Pre-discovered relevant facts.
Returns =======
exprs : set Candidates for next relevant fact searching.
relevant_facts : sympy.assumptions.cnf.CNF Updated relevant facts.
Examples ========
Here, we will see how facts relevant to ``Abs(x*y)`` are recursively extracted. On the first run, set containing the expression is passed without pre-discovered relevant facts. The result is a set containig candidates for next run, and ``CNF()`` instance containing facts which are relevant to ``Abs`` and its argument.
>>> from sympy import Abs >>> from sympy.assumptions.satask import get_relevant_clsfacts >>> from sympy.abc import x, y >>> exprs = {Abs(x*y)} >>> exprs, facts = get_relevant_clsfacts(exprs) >>> exprs {x*y} >>> facts.clauses #doctest: +SKIP {frozenset({Literal(Q.odd(Abs(x*y)), False), Literal(Q.odd(x*y), True)}), frozenset({Literal(Q.zero(Abs(x*y)), False), Literal(Q.zero(x*y), True)}), frozenset({Literal(Q.even(Abs(x*y)), False), Literal(Q.even(x*y), True)}), frozenset({Literal(Q.zero(Abs(x*y)), True), Literal(Q.zero(x*y), False)}), frozenset({Literal(Q.even(Abs(x*y)), False), Literal(Q.odd(Abs(x*y)), False), Literal(Q.odd(x*y), True)}), frozenset({Literal(Q.even(Abs(x*y)), False), Literal(Q.even(x*y), True), Literal(Q.odd(Abs(x*y)), False)}), frozenset({Literal(Q.positive(Abs(x*y)), False), Literal(Q.zero(Abs(x*y)), False)})}
We pass the first run's results to the second run, and get the expressions for next run and updated facts.
>>> exprs, facts = get_relevant_clsfacts(exprs, relevant_facts=facts) >>> exprs {x, y}
On final run, no more candidate is returned thus we know that all relevant facts are successfully retrieved.
>>> exprs, facts = get_relevant_clsfacts(exprs, relevant_facts=facts) >>> exprs set()
"""
if not relevant_facts: relevant_facts = CNF()
newexprs = set() for expr in exprs: for fact in class_fact_registry(expr): newfact = CNF.to_CNF(fact) relevant_facts = relevant_facts._and(newfact) for key in newfact.all_predicates(): if isinstance(key, AppliedPredicate): newexprs |= set(key.arguments)
return newexprs - exprs, relevant_facts
def get_all_relevant_facts(proposition, assumptions, context, use_known_facts=True, iterations=oo): """
Extract all relevant facts from *proposition* and *assumptions*.
This function extracts the facts by recursively calling ``get_relevant_clsfacts()``. Extracted facts are converted to ``EncodedCNF`` and returned.
Parameters ==========
proposition : sympy.assumptions.cnf.CNF CNF generated from proposition expression.
assumptions : sympy.assumptions.cnf.CNF CNF generated from assumption expression.
context : sympy.assumptions.cnf.CNF CNF generated from assumptions context.
use_known_facts : bool, optional. If ``True``, facts from ``sympy.assumptions.ask_generated`` module are encoded as well.
iterations : int, optional. Number of times that relevant facts are recursively extracted. Default is infinite times until no new fact is found.
Returns =======
sympy.assumptions.cnf.EncodedCNF
Examples ========
>>> from sympy import Q >>> from sympy.assumptions.cnf import CNF >>> from sympy.assumptions.satask import get_all_relevant_facts >>> from sympy.abc import x, y >>> props = CNF.from_prop(Q.nonzero(x*y)) >>> assump = CNF.from_prop(Q.nonzero(x)) >>> context = CNF.from_prop(Q.nonzero(y)) >>> get_all_relevant_facts(props, assump, context) #doctest: +SKIP <sympy.assumptions.cnf.EncodedCNF at 0x7f09faa6ccd0>
"""
# The relevant facts might introduce new keys, e.g., Q.zero(x*y) will # introduce the keys Q.zero(x) and Q.zero(y), so we need to run it until # we stop getting new things. Hopefully this strategy won't lead to an # infinite loop in the future. i = 0 relevant_facts = CNF() all_exprs = set() while True: if i == 0: exprs = extract_predargs(proposition, assumptions, context) all_exprs |= exprs exprs, relevant_facts = get_relevant_clsfacts(exprs, relevant_facts) i += 1 if i >= iterations: break if not exprs: break
if use_known_facts: known_facts_CNF = CNF() known_facts_CNF.add_clauses(get_all_known_facts()) kf_encoded = EncodedCNF() kf_encoded.from_cnf(known_facts_CNF)
def translate_literal(lit, delta): if lit > 0: return lit + delta else: return lit - delta
def translate_data(data, delta): return [{translate_literal(i, delta) for i in clause} for clause in data] data = [] symbols = [] n_lit = len(kf_encoded.symbols) for i, expr in enumerate(all_exprs): symbols += [pred(expr) for pred in kf_encoded.symbols] data += translate_data(kf_encoded.data, i * n_lit)
encoding = dict(list(zip(symbols, range(1, len(symbols)+1)))) ctx = EncodedCNF(data, encoding) else: ctx = EncodedCNF()
ctx.add_from_cnf(relevant_facts)
return ctx
|