|
|
"""
The Schur number S(k) is the largest integer n for which the interval [1,n] can be partitioned into k sum-free sets.(http://mathworld.wolfram.com/SchurNumber.html) """
import math from sympy.core import S from sympy.core.basic import Basic from sympy.core.function import Function from sympy.core.numbers import Integer
class SchurNumber(Function): r"""
This function creates a SchurNumber object which is evaluated for `k \le 5` otherwise only the lower bound information can be retrieved.
Examples ========
>>> from sympy.combinatorics.schur_number import SchurNumber
Since S(3) = 13, hence the output is a number >>> SchurNumber(3) 13
We do not know the Schur number for values greater than 5, hence only the object is returned >>> SchurNumber(6) SchurNumber(6)
Now, the lower bound information can be retrieved using lower_bound() method >>> SchurNumber(6).lower_bound() 536
"""
@classmethod def eval(cls, k): if k.is_Number: if k is S.Infinity: return S.Infinity if k.is_zero: return S.Zero if not k.is_integer or k.is_negative: raise ValueError("k should be a positive integer") first_known_schur_numbers = {1: 1, 2: 4, 3: 13, 4: 44, 5: 160} if k <= 5: return Integer(first_known_schur_numbers[k])
def lower_bound(self): f_ = self.args[0] # Improved lower bounds known for S(6) and S(7) if f_ == 6: return Integer(536) if f_ == 7: return Integer(1680) # For other cases, use general expression if f_.is_Integer: return 3*self.func(f_ - 1).lower_bound() - 1 return (3**f_ - 1)/2
def _schur_subsets_number(n):
if n is S.Infinity: raise ValueError("Input must be finite") if n <= 0: raise ValueError("n must be a non-zero positive integer.") elif n <= 3: min_k = 1 else: min_k = math.ceil(math.log(2*n + 1, 3))
return Integer(min_k)
def schur_partition(n): """
This function returns the partition in the minimum number of sum-free subsets according to the lower bound given by the Schur Number.
Parameters ==========
n: a number n is the upper limit of the range [1, n] for which we need to find and return the minimum number of free subsets according to the lower bound of schur number
Returns =======
List of lists List of the minimum number of sum-free subsets
Notes =====
It is possible for some n to make the partition into less subsets since the only known Schur numbers are: S(1) = 1, S(2) = 4, S(3) = 13, S(4) = 44. e.g for n = 44 the lower bound from the function above is 5 subsets but it has been proven that can be done with 4 subsets.
Examples ========
For n = 1, 2, 3 the answer is the set itself
>>> from sympy.combinatorics.schur_number import schur_partition >>> schur_partition(2) [[1, 2]]
For n > 3, the answer is the minimum number of sum-free subsets:
>>> schur_partition(5) [[3, 2], [5], [1, 4]]
>>> schur_partition(8) [[3, 2], [6, 5, 8], [1, 4, 7]] """
if isinstance(n, Basic) and not n.is_Number: raise ValueError("Input value must be a number")
number_of_subsets = _schur_subsets_number(n) if n == 1: sum_free_subsets = [[1]] elif n == 2: sum_free_subsets = [[1, 2]] elif n == 3: sum_free_subsets = [[1, 2, 3]] else: sum_free_subsets = [[1, 4], [2, 3]]
while len(sum_free_subsets) < number_of_subsets: sum_free_subsets = _generate_next_list(sum_free_subsets, n) missed_elements = [3*k + 1 for k in range(len(sum_free_subsets), (n-1)//3 + 1)] sum_free_subsets[-1] += missed_elements
return sum_free_subsets
def _generate_next_list(current_list, n): new_list = []
for item in current_list: temp_1 = [number*3 for number in item if number*3 <= n] temp_2 = [number*3 - 1 for number in item if number*3 - 1 <= n] new_item = temp_1 + temp_2 new_list.append(new_item)
last_list = [3*k + 1 for k in range(0, len(current_list)+1) if 3*k + 1 <= n] new_list.append(last_list) current_list = new_list
return current_list
|