m2m模型翻译
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

203 lines
7.7 KiB

6 months ago
  1. """Tests for Gosper's algorithm for hypergeometric summation. """
  2. from sympy.core.numbers import (Rational, pi)
  3. from sympy.core.singleton import S
  4. from sympy.core.symbol import Symbol
  5. from sympy.functions.combinatorial.factorials import (binomial, factorial)
  6. from sympy.functions.elementary.miscellaneous import sqrt
  7. from sympy.functions.special.gamma_functions import gamma
  8. from sympy.polys.polytools import Poly
  9. from sympy.simplify.simplify import simplify
  10. from sympy.abc import a, b, j, k, m, n, r, x
  11. from sympy.concrete.gosper import gosper_normal, gosper_sum, gosper_term
  12. def test_gosper_normal():
  13. eq = 4*n + 5, 2*(4*n + 1)*(2*n + 3), n
  14. assert gosper_normal(*eq) == \
  15. (Poly(Rational(1, 4), n), Poly(n + Rational(3, 2)), Poly(n + Rational(1, 4)))
  16. assert gosper_normal(*eq, polys=False) == \
  17. (Rational(1, 4), n + Rational(3, 2), n + Rational(1, 4))
  18. def test_gosper_term():
  19. assert gosper_term((4*k + 1)*factorial(
  20. k)/factorial(2*k + 1), k) == (-k - S.Half)/(k + Rational(1, 4))
  21. def test_gosper_sum():
  22. assert gosper_sum(1, (k, 0, n)) == 1 + n
  23. assert gosper_sum(k, (k, 0, n)) == n*(1 + n)/2
  24. assert gosper_sum(k**2, (k, 0, n)) == n*(1 + n)*(1 + 2*n)/6
  25. assert gosper_sum(k**3, (k, 0, n)) == n**2*(1 + n)**2/4
  26. assert gosper_sum(2**k, (k, 0, n)) == 2*2**n - 1
  27. assert gosper_sum(factorial(k), (k, 0, n)) is None
  28. assert gosper_sum(binomial(n, k), (k, 0, n)) is None
  29. assert gosper_sum(factorial(k)/k**2, (k, 0, n)) is None
  30. assert gosper_sum((k - 3)*factorial(k), (k, 0, n)) is None
  31. assert gosper_sum(k*factorial(k), k) == factorial(k)
  32. assert gosper_sum(
  33. k*factorial(k), (k, 0, n)) == n*factorial(n) + factorial(n) - 1
  34. assert gosper_sum((-1)**k*binomial(n, k), (k, 0, n)) == 0
  35. assert gosper_sum((
  36. -1)**k*binomial(n, k), (k, 0, m)) == -(-1)**m*(m - n)*binomial(n, m)/n
  37. assert gosper_sum((4*k + 1)*factorial(k)/factorial(2*k + 1), (k, 0, n)) == \
  38. (2*factorial(2*n + 1) - factorial(n))/factorial(2*n + 1)
  39. # issue 6033:
  40. assert gosper_sum(
  41. n*(n + a + b)*a**n*b**n/(factorial(n + a)*factorial(n + b)), \
  42. (n, 0, m)).simplify() == -(a*b)**m*gamma(a + 1) \
  43. *gamma(b + 1)/(gamma(a)*gamma(b)*gamma(a + m + 1)*gamma(b + m + 1)) \
  44. + 1/(gamma(a)*gamma(b))
  45. def test_gosper_sum_indefinite():
  46. assert gosper_sum(k, k) == k*(k - 1)/2
  47. assert gosper_sum(k**2, k) == k*(k - 1)*(2*k - 1)/6
  48. assert gosper_sum(1/(k*(k + 1)), k) == -1/k
  49. assert gosper_sum(-(27*k**4 + 158*k**3 + 430*k**2 + 678*k + 445)*gamma(2*k
  50. + 4)/(3*(3*k + 7)*gamma(3*k + 6)), k) == \
  51. (3*k + 5)*(k**2 + 2*k + 5)*gamma(2*k + 4)/gamma(3*k + 6)
  52. def test_gosper_sum_parametric():
  53. assert gosper_sum(binomial(S.Half, m - j + 1)*binomial(S.Half, m + j), (j, 1, n)) == \
  54. n*(1 + m - n)*(-1 + 2*m + 2*n)*binomial(S.Half, 1 + m - n)* \
  55. binomial(S.Half, m + n)/(m*(1 + 2*m))
  56. def test_gosper_sum_algebraic():
  57. assert gosper_sum(
  58. n**2 + sqrt(2), (n, 0, m)) == (m + 1)*(2*m**2 + m + 6*sqrt(2))/6
  59. def test_gosper_sum_iterated():
  60. f1 = binomial(2*k, k)/4**k
  61. f2 = (1 + 2*n)*binomial(2*n, n)/4**n
  62. f3 = (1 + 2*n)*(3 + 2*n)*binomial(2*n, n)/(3*4**n)
  63. f4 = (1 + 2*n)*(3 + 2*n)*(5 + 2*n)*binomial(2*n, n)/(15*4**n)
  64. f5 = (1 + 2*n)*(3 + 2*n)*(5 + 2*n)*(7 + 2*n)*binomial(2*n, n)/(105*4**n)
  65. assert gosper_sum(f1, (k, 0, n)) == f2
  66. assert gosper_sum(f2, (n, 0, n)) == f3
  67. assert gosper_sum(f3, (n, 0, n)) == f4
  68. assert gosper_sum(f4, (n, 0, n)) == f5
  69. # the AeqB tests test expressions given in
  70. # www.math.upenn.edu/~wilf/AeqB.pdf
  71. def test_gosper_sum_AeqB_part1():
  72. f1a = n**4
  73. f1b = n**3*2**n
  74. f1c = 1/(n**2 + sqrt(5)*n - 1)
  75. f1d = n**4*4**n/binomial(2*n, n)
  76. f1e = factorial(3*n)/(factorial(n)*factorial(n + 1)*factorial(n + 2)*27**n)
  77. f1f = binomial(2*n, n)**2/((n + 1)*4**(2*n))
  78. f1g = (4*n - 1)*binomial(2*n, n)**2/((2*n - 1)**2*4**(2*n))
  79. f1h = n*factorial(n - S.Half)**2/factorial(n + 1)**2
  80. g1a = m*(m + 1)*(2*m + 1)*(3*m**2 + 3*m - 1)/30
  81. g1b = 26 + 2**(m + 1)*(m**3 - 3*m**2 + 9*m - 13)
  82. g1c = (m + 1)*(m*(m**2 - 7*m + 3)*sqrt(5) - (
  83. 3*m**3 - 7*m**2 + 19*m - 6))/(2*m**3*sqrt(5) + m**4 + 5*m**2 - 1)/6
  84. g1d = Rational(-2, 231) + 2*4**m*(m + 1)*(63*m**4 + 112*m**3 + 18*m**2 -
  85. 22*m + 3)/(693*binomial(2*m, m))
  86. g1e = Rational(-9, 2) + (81*m**2 + 261*m + 200)*factorial(
  87. 3*m + 2)/(40*27**m*factorial(m)*factorial(m + 1)*factorial(m + 2))
  88. g1f = (2*m + 1)**2*binomial(2*m, m)**2/(4**(2*m)*(m + 1))
  89. g1g = -binomial(2*m, m)**2/4**(2*m)
  90. g1h = 4*pi -(2*m + 1)**2*(3*m + 4)*factorial(m - S.Half)**2/factorial(m + 1)**2
  91. g = gosper_sum(f1a, (n, 0, m))
  92. assert g is not None and simplify(g - g1a) == 0
  93. g = gosper_sum(f1b, (n, 0, m))
  94. assert g is not None and simplify(g - g1b) == 0
  95. g = gosper_sum(f1c, (n, 0, m))
  96. assert g is not None and simplify(g - g1c) == 0
  97. g = gosper_sum(f1d, (n, 0, m))
  98. assert g is not None and simplify(g - g1d) == 0
  99. g = gosper_sum(f1e, (n, 0, m))
  100. assert g is not None and simplify(g - g1e) == 0
  101. g = gosper_sum(f1f, (n, 0, m))
  102. assert g is not None and simplify(g - g1f) == 0
  103. g = gosper_sum(f1g, (n, 0, m))
  104. assert g is not None and simplify(g - g1g) == 0
  105. g = gosper_sum(f1h, (n, 0, m))
  106. # need to call rewrite(gamma) here because we have terms involving
  107. # factorial(1/2)
  108. assert g is not None and simplify(g - g1h).rewrite(gamma) == 0
  109. def test_gosper_sum_AeqB_part2():
  110. f2a = n**2*a**n
  111. f2b = (n - r/2)*binomial(r, n)
  112. f2c = factorial(n - 1)**2/(factorial(n - x)*factorial(n + x))
  113. g2a = -a*(a + 1)/(a - 1)**3 + a**(
  114. m + 1)*(a**2*m**2 - 2*a*m**2 + m**2 - 2*a*m + 2*m + a + 1)/(a - 1)**3
  115. g2b = (m - r)*binomial(r, m)/2
  116. ff = factorial(1 - x)*factorial(1 + x)
  117. g2c = 1/ff*(
  118. 1 - 1/x**2) + factorial(m)**2/(x**2*factorial(m - x)*factorial(m + x))
  119. g = gosper_sum(f2a, (n, 0, m))
  120. assert g is not None and simplify(g - g2a) == 0
  121. g = gosper_sum(f2b, (n, 0, m))
  122. assert g is not None and simplify(g - g2b) == 0
  123. g = gosper_sum(f2c, (n, 1, m))
  124. assert g is not None and simplify(g - g2c) == 0
  125. def test_gosper_nan():
  126. a = Symbol('a', positive=True)
  127. b = Symbol('b', positive=True)
  128. n = Symbol('n', integer=True)
  129. m = Symbol('m', integer=True)
  130. f2d = n*(n + a + b)*a**n*b**n/(factorial(n + a)*factorial(n + b))
  131. g2d = 1/(factorial(a - 1)*factorial(
  132. b - 1)) - a**(m + 1)*b**(m + 1)/(factorial(a + m)*factorial(b + m))
  133. g = gosper_sum(f2d, (n, 0, m))
  134. assert simplify(g - g2d) == 0
  135. def test_gosper_sum_AeqB_part3():
  136. f3a = 1/n**4
  137. f3b = (6*n + 3)/(4*n**4 + 8*n**3 + 8*n**2 + 4*n + 3)
  138. f3c = 2**n*(n**2 - 2*n - 1)/(n**2*(n + 1)**2)
  139. f3d = n**2*4**n/((n + 1)*(n + 2))
  140. f3e = 2**n/(n + 1)
  141. f3f = 4*(n - 1)*(n**2 - 2*n - 1)/(n**2*(n + 1)**2*(n - 2)**2*(n - 3)**2)
  142. f3g = (n**4 - 14*n**2 - 24*n - 9)*2**n/(n**2*(n + 1)**2*(n + 2)**2*
  143. (n + 3)**2)
  144. # g3a -> no closed form
  145. g3b = m*(m + 2)/(2*m**2 + 4*m + 3)
  146. g3c = 2**m/m**2 - 2
  147. g3d = Rational(2, 3) + 4**(m + 1)*(m - 1)/(m + 2)/3
  148. # g3e -> no closed form
  149. g3f = -(Rational(-1, 16) + 1/((m - 2)**2*(m + 1)**2)) # the AeqB key is wrong
  150. g3g = Rational(-2, 9) + 2**(m + 1)/((m + 1)**2*(m + 3)**2)
  151. g = gosper_sum(f3a, (n, 1, m))
  152. assert g is None
  153. g = gosper_sum(f3b, (n, 1, m))
  154. assert g is not None and simplify(g - g3b) == 0
  155. g = gosper_sum(f3c, (n, 1, m - 1))
  156. assert g is not None and simplify(g - g3c) == 0
  157. g = gosper_sum(f3d, (n, 1, m))
  158. assert g is not None and simplify(g - g3d) == 0
  159. g = gosper_sum(f3e, (n, 0, m - 1))
  160. assert g is None
  161. g = gosper_sum(f3f, (n, 4, m))
  162. assert g is not None and simplify(g - g3f) == 0
  163. g = gosper_sum(f3g, (n, 1, m))
  164. assert g is not None and simplify(g - g3g) == 0