|
|
""" This module contains the Mathieu functions.
"""
from sympy.core.function import Function, ArgumentIndexError from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import sin, cos
class MathieuBase(Function): """
Abstract base class for Mathieu functions.
This class is meant to reduce code duplication.
"""
unbranched = True
def _eval_conjugate(self): a, q, z = self.args return self.func(a.conjugate(), q.conjugate(), z.conjugate())
class mathieus(MathieuBase): r"""
The Mathieu Sine function $S(a,q,z)$.
Explanation ===========
This function is one solution of the Mathieu differential equation:
.. math :: y(x)^{\prime\prime} + (a - 2 q \cos(2 x)) y(x) = 0
The other solution is the Mathieu Cosine function.
Examples ========
>>> from sympy import diff, mathieus >>> from sympy.abc import a, q, z
>>> mathieus(a, q, z) mathieus(a, q, z)
>>> mathieus(a, 0, z) sin(sqrt(a)*z)
>>> diff(mathieus(a, q, z), z) mathieusprime(a, q, z)
See Also ========
mathieuc: Mathieu cosine function. mathieusprime: Derivative of Mathieu sine function. mathieucprime: Derivative of Mathieu cosine function.
References ==========
.. [1] https://en.wikipedia.org/wiki/Mathieu_function .. [2] http://dlmf.nist.gov/28 .. [3] http://mathworld.wolfram.com/MathieuBase.html .. [4] http://functions.wolfram.com/MathieuandSpheroidalFunctions/MathieuS/
"""
def fdiff(self, argindex=1): if argindex == 3: a, q, z = self.args return mathieusprime(a, q, z) else: raise ArgumentIndexError(self, argindex)
@classmethod def eval(cls, a, q, z): if q.is_Number and q.is_zero: return sin(sqrt(a)*z) # Try to pull out factors of -1 if z.could_extract_minus_sign(): return -cls(a, q, -z)
class mathieuc(MathieuBase): r"""
The Mathieu Cosine function $C(a,q,z)$.
Explanation ===========
This function is one solution of the Mathieu differential equation:
.. math :: y(x)^{\prime\prime} + (a - 2 q \cos(2 x)) y(x) = 0
The other solution is the Mathieu Sine function.
Examples ========
>>> from sympy import diff, mathieuc >>> from sympy.abc import a, q, z
>>> mathieuc(a, q, z) mathieuc(a, q, z)
>>> mathieuc(a, 0, z) cos(sqrt(a)*z)
>>> diff(mathieuc(a, q, z), z) mathieucprime(a, q, z)
See Also ========
mathieus: Mathieu sine function mathieusprime: Derivative of Mathieu sine function mathieucprime: Derivative of Mathieu cosine function
References ==========
.. [1] https://en.wikipedia.org/wiki/Mathieu_function .. [2] http://dlmf.nist.gov/28 .. [3] http://mathworld.wolfram.com/MathieuBase.html .. [4] http://functions.wolfram.com/MathieuandSpheroidalFunctions/MathieuC/
"""
def fdiff(self, argindex=1): if argindex == 3: a, q, z = self.args return mathieucprime(a, q, z) else: raise ArgumentIndexError(self, argindex)
@classmethod def eval(cls, a, q, z): if q.is_Number and q.is_zero: return cos(sqrt(a)*z) # Try to pull out factors of -1 if z.could_extract_minus_sign(): return cls(a, q, -z)
class mathieusprime(MathieuBase): r"""
The derivative $S^{\prime}(a,q,z)$ of the Mathieu Sine function.
Explanation ===========
This function is one solution of the Mathieu differential equation:
.. math :: y(x)^{\prime\prime} + (a - 2 q \cos(2 x)) y(x) = 0
The other solution is the Mathieu Cosine function.
Examples ========
>>> from sympy import diff, mathieusprime >>> from sympy.abc import a, q, z
>>> mathieusprime(a, q, z) mathieusprime(a, q, z)
>>> mathieusprime(a, 0, z) sqrt(a)*cos(sqrt(a)*z)
>>> diff(mathieusprime(a, q, z), z) (-a + 2*q*cos(2*z))*mathieus(a, q, z)
See Also ========
mathieus: Mathieu sine function mathieuc: Mathieu cosine function mathieucprime: Derivative of Mathieu cosine function
References ==========
.. [1] https://en.wikipedia.org/wiki/Mathieu_function .. [2] http://dlmf.nist.gov/28 .. [3] http://mathworld.wolfram.com/MathieuBase.html .. [4] http://functions.wolfram.com/MathieuandSpheroidalFunctions/MathieuSPrime/
"""
def fdiff(self, argindex=1): if argindex == 3: a, q, z = self.args return (2*q*cos(2*z) - a)*mathieus(a, q, z) else: raise ArgumentIndexError(self, argindex)
@classmethod def eval(cls, a, q, z): if q.is_Number and q.is_zero: return sqrt(a)*cos(sqrt(a)*z) # Try to pull out factors of -1 if z.could_extract_minus_sign(): return cls(a, q, -z)
class mathieucprime(MathieuBase): r"""
The derivative $C^{\prime}(a,q,z)$ of the Mathieu Cosine function.
Explanation ===========
This function is one solution of the Mathieu differential equation:
.. math :: y(x)^{\prime\prime} + (a - 2 q \cos(2 x)) y(x) = 0
The other solution is the Mathieu Sine function.
Examples ========
>>> from sympy import diff, mathieucprime >>> from sympy.abc import a, q, z
>>> mathieucprime(a, q, z) mathieucprime(a, q, z)
>>> mathieucprime(a, 0, z) -sqrt(a)*sin(sqrt(a)*z)
>>> diff(mathieucprime(a, q, z), z) (-a + 2*q*cos(2*z))*mathieuc(a, q, z)
See Also ========
mathieus: Mathieu sine function mathieuc: Mathieu cosine function mathieusprime: Derivative of Mathieu sine function
References ==========
.. [1] https://en.wikipedia.org/wiki/Mathieu_function .. [2] http://dlmf.nist.gov/28 .. [3] http://mathworld.wolfram.com/MathieuBase.html .. [4] http://functions.wolfram.com/MathieuandSpheroidalFunctions/MathieuCPrime/
"""
def fdiff(self, argindex=1): if argindex == 3: a, q, z = self.args return (2*q*cos(2*z) - a)*mathieuc(a, q, z) else: raise ArgumentIndexError(self, argindex)
@classmethod def eval(cls, a, q, z): if q.is_Number and q.is_zero: return -sqrt(a)*sin(sqrt(a)*z) # Try to pull out factors of -1 if z.could_extract_minus_sign(): return -cls(a, q, -z)
|