|
|
from sympy.core.expr import Expr from sympy.core.function import Function, ArgumentIndexError from sympy.core.numbers import I, pi from sympy.core.singleton import S from sympy.core.symbol import Dummy from sympy.core.sympify import sympify from sympy.functions import assoc_legendre from sympy.functions.combinatorial.factorials import factorial from sympy.functions.elementary.complexes import Abs from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import sin, cos, cot
_x = Dummy("x")
class Ynm(Function): r"""
Spherical harmonics defined as
.. math:: Y_n^m(\theta, \varphi) := \sqrt{\frac{(2n+1)(n-m)!}{4\pi(n+m)!}} \exp(i m \varphi) \mathrm{P}_n^m\left(\cos(\theta)\right)
Explanation ===========
``Ynm()`` gives the spherical harmonic function of order $n$ and $m$ in $\theta$ and $\varphi$, $Y_n^m(\theta, \varphi)$. The four parameters are as follows: $n \geq 0$ an integer and $m$ an integer such that $-n \leq m \leq n$ holds. The two angles are real-valued with $\theta \in [0, \pi]$ and $\varphi \in [0, 2\pi]$.
Examples ========
>>> from sympy import Ynm, Symbol, simplify >>> from sympy.abc import n,m >>> theta = Symbol("theta") >>> phi = Symbol("phi")
>>> Ynm(n, m, theta, phi) Ynm(n, m, theta, phi)
Several symmetries are known, for the order:
>>> Ynm(n, -m, theta, phi) (-1)**m*exp(-2*I*m*phi)*Ynm(n, m, theta, phi)
As well as for the angles:
>>> Ynm(n, m, -theta, phi) Ynm(n, m, theta, phi)
>>> Ynm(n, m, theta, -phi) exp(-2*I*m*phi)*Ynm(n, m, theta, phi)
For specific integers $n$ and $m$ we can evaluate the harmonics to more useful expressions:
>>> simplify(Ynm(0, 0, theta, phi).expand(func=True)) 1/(2*sqrt(pi))
>>> simplify(Ynm(1, -1, theta, phi).expand(func=True)) sqrt(6)*exp(-I*phi)*sin(theta)/(4*sqrt(pi))
>>> simplify(Ynm(1, 0, theta, phi).expand(func=True)) sqrt(3)*cos(theta)/(2*sqrt(pi))
>>> simplify(Ynm(1, 1, theta, phi).expand(func=True)) -sqrt(6)*exp(I*phi)*sin(theta)/(4*sqrt(pi))
>>> simplify(Ynm(2, -2, theta, phi).expand(func=True)) sqrt(30)*exp(-2*I*phi)*sin(theta)**2/(8*sqrt(pi))
>>> simplify(Ynm(2, -1, theta, phi).expand(func=True)) sqrt(30)*exp(-I*phi)*sin(2*theta)/(8*sqrt(pi))
>>> simplify(Ynm(2, 0, theta, phi).expand(func=True)) sqrt(5)*(3*cos(theta)**2 - 1)/(4*sqrt(pi))
>>> simplify(Ynm(2, 1, theta, phi).expand(func=True)) -sqrt(30)*exp(I*phi)*sin(2*theta)/(8*sqrt(pi))
>>> simplify(Ynm(2, 2, theta, phi).expand(func=True)) sqrt(30)*exp(2*I*phi)*sin(theta)**2/(8*sqrt(pi))
We can differentiate the functions with respect to both angles:
>>> from sympy import Ynm, Symbol, diff >>> from sympy.abc import n,m >>> theta = Symbol("theta") >>> phi = Symbol("phi")
>>> diff(Ynm(n, m, theta, phi), theta) m*cot(theta)*Ynm(n, m, theta, phi) + sqrt((-m + n)*(m + n + 1))*exp(-I*phi)*Ynm(n, m + 1, theta, phi)
>>> diff(Ynm(n, m, theta, phi), phi) I*m*Ynm(n, m, theta, phi)
Further we can compute the complex conjugation:
>>> from sympy import Ynm, Symbol, conjugate >>> from sympy.abc import n,m >>> theta = Symbol("theta") >>> phi = Symbol("phi")
>>> conjugate(Ynm(n, m, theta, phi)) (-1)**(2*m)*exp(-2*I*m*phi)*Ynm(n, m, theta, phi)
To get back the well known expressions in spherical coordinates, we use full expansion:
>>> from sympy import Ynm, Symbol, expand_func >>> from sympy.abc import n,m >>> theta = Symbol("theta") >>> phi = Symbol("phi")
>>> expand_func(Ynm(n, m, theta, phi)) sqrt((2*n + 1)*factorial(-m + n)/factorial(m + n))*exp(I*m*phi)*assoc_legendre(n, m, cos(theta))/(2*sqrt(pi))
See Also ========
Ynm_c, Znm
References ==========
.. [1] https://en.wikipedia.org/wiki/Spherical_harmonics .. [2] http://mathworld.wolfram.com/SphericalHarmonic.html .. [3] http://functions.wolfram.com/Polynomials/SphericalHarmonicY/ .. [4] http://dlmf.nist.gov/14.30
"""
@classmethod def eval(cls, n, m, theta, phi): n, m, theta, phi = [sympify(x) for x in (n, m, theta, phi)]
# Handle negative index m and arguments theta, phi if m.could_extract_minus_sign(): m = -m return S.NegativeOne**m * exp(-2*I*m*phi) * Ynm(n, m, theta, phi) if theta.could_extract_minus_sign(): theta = -theta return Ynm(n, m, theta, phi) if phi.could_extract_minus_sign(): phi = -phi return exp(-2*I*m*phi) * Ynm(n, m, theta, phi)
# TODO Add more simplififcation here
def _eval_expand_func(self, **hints): n, m, theta, phi = self.args rv = (sqrt((2*n + 1)/(4*pi) * factorial(n - m)/factorial(n + m)) * exp(I*m*phi) * assoc_legendre(n, m, cos(theta))) # We can do this because of the range of theta return rv.subs(sqrt(-cos(theta)**2 + 1), sin(theta))
def fdiff(self, argindex=4): if argindex == 1: # Diff wrt n raise ArgumentIndexError(self, argindex) elif argindex == 2: # Diff wrt m raise ArgumentIndexError(self, argindex) elif argindex == 3: # Diff wrt theta n, m, theta, phi = self.args return (m * cot(theta) * Ynm(n, m, theta, phi) + sqrt((n - m)*(n + m + 1)) * exp(-I*phi) * Ynm(n, m + 1, theta, phi)) elif argindex == 4: # Diff wrt phi n, m, theta, phi = self.args return I * m * Ynm(n, m, theta, phi) else: raise ArgumentIndexError(self, argindex)
def _eval_rewrite_as_polynomial(self, n, m, theta, phi, **kwargs): # TODO: Make sure n \in N # TODO: Assert |m| <= n ortherwise we should return 0 return self.expand(func=True)
def _eval_rewrite_as_sin(self, n, m, theta, phi, **kwargs): return self.rewrite(cos)
def _eval_rewrite_as_cos(self, n, m, theta, phi, **kwargs): # This method can be expensive due to extensive use of simplification! from sympy.simplify import simplify, trigsimp # TODO: Make sure n \in N # TODO: Assert |m| <= n ortherwise we should return 0 term = simplify(self.expand(func=True)) # We can do this because of the range of theta term = term.xreplace({Abs(sin(theta)):sin(theta)}) return simplify(trigsimp(term))
def _eval_conjugate(self): # TODO: Make sure theta \in R and phi \in R n, m, theta, phi = self.args return S.NegativeOne**m * self.func(n, -m, theta, phi)
def as_real_imag(self, deep=True, **hints): # TODO: Handle deep and hints n, m, theta, phi = self.args re = (sqrt((2*n + 1)/(4*pi) * factorial(n - m)/factorial(n + m)) * cos(m*phi) * assoc_legendre(n, m, cos(theta))) im = (sqrt((2*n + 1)/(4*pi) * factorial(n - m)/factorial(n + m)) * sin(m*phi) * assoc_legendre(n, m, cos(theta))) return (re, im)
def _eval_evalf(self, prec): # Note: works without this function by just calling # mpmath for Legendre polynomials. But using # the dedicated function directly is cleaner. from mpmath import mp, workprec n = self.args[0]._to_mpmath(prec) m = self.args[1]._to_mpmath(prec) theta = self.args[2]._to_mpmath(prec) phi = self.args[3]._to_mpmath(prec) with workprec(prec): res = mp.spherharm(n, m, theta, phi) return Expr._from_mpmath(res, prec)
def Ynm_c(n, m, theta, phi): r"""
Conjugate spherical harmonics defined as
.. math:: \overline{Y_n^m(\theta, \varphi)} := (-1)^m Y_n^{-m}(\theta, \varphi).
Examples ========
>>> from sympy import Ynm_c, Symbol, simplify >>> from sympy.abc import n,m >>> theta = Symbol("theta") >>> phi = Symbol("phi") >>> Ynm_c(n, m, theta, phi) (-1)**(2*m)*exp(-2*I*m*phi)*Ynm(n, m, theta, phi) >>> Ynm_c(n, m, -theta, phi) (-1)**(2*m)*exp(-2*I*m*phi)*Ynm(n, m, theta, phi)
For specific integers $n$ and $m$ we can evaluate the harmonics to more useful expressions:
>>> simplify(Ynm_c(0, 0, theta, phi).expand(func=True)) 1/(2*sqrt(pi)) >>> simplify(Ynm_c(1, -1, theta, phi).expand(func=True)) sqrt(6)*exp(I*(-phi + 2*conjugate(phi)))*sin(theta)/(4*sqrt(pi))
See Also ========
Ynm, Znm
References ==========
.. [1] https://en.wikipedia.org/wiki/Spherical_harmonics .. [2] http://mathworld.wolfram.com/SphericalHarmonic.html .. [3] http://functions.wolfram.com/Polynomials/SphericalHarmonicY/
"""
from sympy.functions.elementary.complexes import conjugate return conjugate(Ynm(n, m, theta, phi))
class Znm(Function): r"""
Real spherical harmonics defined as
.. math::
Z_n^m(\theta, \varphi) := \begin{cases} \frac{Y_n^m(\theta, \varphi) + \overline{Y_n^m(\theta, \varphi)}}{\sqrt{2}} &\quad m > 0 \\ Y_n^m(\theta, \varphi) &\quad m = 0 \\ \frac{Y_n^m(\theta, \varphi) - \overline{Y_n^m(\theta, \varphi)}}{i \sqrt{2}} &\quad m < 0 \\ \end{cases}
which gives in simplified form
.. math::
Z_n^m(\theta, \varphi) = \begin{cases} \frac{Y_n^m(\theta, \varphi) + (-1)^m Y_n^{-m}(\theta, \varphi)}{\sqrt{2}} &\quad m > 0 \\ Y_n^m(\theta, \varphi) &\quad m = 0 \\ \frac{Y_n^m(\theta, \varphi) - (-1)^m Y_n^{-m}(\theta, \varphi)}{i \sqrt{2}} &\quad m < 0 \\ \end{cases}
Examples ========
>>> from sympy import Znm, Symbol, simplify >>> from sympy.abc import n, m >>> theta = Symbol("theta") >>> phi = Symbol("phi") >>> Znm(n, m, theta, phi) Znm(n, m, theta, phi)
For specific integers n and m we can evaluate the harmonics to more useful expressions:
>>> simplify(Znm(0, 0, theta, phi).expand(func=True)) 1/(2*sqrt(pi)) >>> simplify(Znm(1, 1, theta, phi).expand(func=True)) -sqrt(3)*sin(theta)*cos(phi)/(2*sqrt(pi)) >>> simplify(Znm(2, 1, theta, phi).expand(func=True)) -sqrt(15)*sin(2*theta)*cos(phi)/(4*sqrt(pi))
See Also ========
Ynm, Ynm_c
References ==========
.. [1] https://en.wikipedia.org/wiki/Spherical_harmonics .. [2] http://mathworld.wolfram.com/SphericalHarmonic.html .. [3] http://functions.wolfram.com/Polynomials/SphericalHarmonicY/
"""
@classmethod def eval(cls, n, m, theta, phi): n, m, th, ph = [sympify(x) for x in (n, m, theta, phi)]
if m.is_positive: zz = (Ynm(n, m, th, ph) + Ynm_c(n, m, th, ph)) / sqrt(2) return zz elif m.is_zero: return Ynm(n, m, th, ph) elif m.is_negative: zz = (Ynm(n, m, th, ph) - Ynm_c(n, m, th, ph)) / (sqrt(2)*I) return zz
|