m2m模型翻译
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

271 lines
9.4 KiB

6 months ago
  1. from sympy.concrete.summations import Sum
  2. from sympy.core.function import expand_func
  3. from sympy.core.numbers import (Float, I, Rational, nan, oo, pi, zoo)
  4. from sympy.core.singleton import S
  5. from sympy.core.symbol import Symbol
  6. from sympy.functions.elementary.complexes import (Abs, polar_lift)
  7. from sympy.functions.elementary.exponential import (exp, exp_polar, log)
  8. from sympy.functions.elementary.miscellaneous import sqrt
  9. from sympy.functions.special.zeta_functions import (dirichlet_eta, lerchphi, polylog, riemann_xi, stieltjes, zeta)
  10. from sympy.series.order import O
  11. from sympy.core.function import ArgumentIndexError
  12. from sympy.functions.combinatorial.numbers import bernoulli, factorial
  13. from sympy.testing.pytest import raises
  14. from sympy.core.random import (test_derivative_numerically as td,
  15. random_complex_number as randcplx, verify_numerically)
  16. x = Symbol('x')
  17. a = Symbol('a')
  18. b = Symbol('b', negative=True)
  19. z = Symbol('z')
  20. s = Symbol('s')
  21. def test_zeta_eval():
  22. assert zeta(nan) is nan
  23. assert zeta(x, nan) is nan
  24. assert zeta(0) == Rational(-1, 2)
  25. assert zeta(0, x) == S.Half - x
  26. assert zeta(0, b) == S.Half - b
  27. assert zeta(1) is zoo
  28. assert zeta(1, 2) is zoo
  29. assert zeta(1, -7) is zoo
  30. assert zeta(1, x) is zoo
  31. assert zeta(2, 1) == pi**2/6
  32. assert zeta(2) == pi**2/6
  33. assert zeta(4) == pi**4/90
  34. assert zeta(6) == pi**6/945
  35. assert zeta(2, 2) == pi**2/6 - 1
  36. assert zeta(4, 3) == pi**4/90 - Rational(17, 16)
  37. assert zeta(6, 4) == pi**6/945 - Rational(47449, 46656)
  38. assert zeta(2, -2) == pi**2/6 + Rational(5, 4)
  39. assert zeta(4, -3) == pi**4/90 + Rational(1393, 1296)
  40. assert zeta(6, -4) == pi**6/945 + Rational(3037465, 2985984)
  41. assert zeta(oo) == 1
  42. assert zeta(-1) == Rational(-1, 12)
  43. assert zeta(-2) == 0
  44. assert zeta(-3) == Rational(1, 120)
  45. assert zeta(-4) == 0
  46. assert zeta(-5) == Rational(-1, 252)
  47. assert zeta(-1, 3) == Rational(-37, 12)
  48. assert zeta(-1, 7) == Rational(-253, 12)
  49. assert zeta(-1, -4) == Rational(119, 12)
  50. assert zeta(-1, -9) == Rational(539, 12)
  51. assert zeta(-4, 3) == -17
  52. assert zeta(-4, -8) == 8772
  53. assert zeta(0, 1) == Rational(-1, 2)
  54. assert zeta(0, -1) == Rational(3, 2)
  55. assert zeta(0, 2) == Rational(-3, 2)
  56. assert zeta(0, -2) == Rational(5, 2)
  57. assert zeta(
  58. 3).evalf(20).epsilon_eq(Float("1.2020569031595942854", 20), 1e-19)
  59. def test_zeta_series():
  60. assert zeta(x, a).series(a, 0, 2) == \
  61. zeta(x, 0) - x*a*zeta(x + 1, 0) + O(a**2)
  62. def test_dirichlet_eta_eval():
  63. assert dirichlet_eta(0) == S.Half
  64. assert dirichlet_eta(-1) == Rational(1, 4)
  65. assert dirichlet_eta(1) == log(2)
  66. assert dirichlet_eta(2) == pi**2/12
  67. assert dirichlet_eta(4) == pi**4*Rational(7, 720)
  68. def test_riemann_xi_eval():
  69. assert riemann_xi(2) == pi/6
  70. assert riemann_xi(0) == Rational(1, 2)
  71. assert riemann_xi(1) == Rational(1, 2)
  72. assert riemann_xi(3).rewrite(zeta) == 3*zeta(3)/(2*pi)
  73. assert riemann_xi(4) == pi**2/15
  74. def test_rewriting():
  75. assert dirichlet_eta(x).rewrite(zeta) == (1 - 2**(1 - x))*zeta(x)
  76. assert zeta(x).rewrite(dirichlet_eta) == dirichlet_eta(x)/(1 - 2**(1 - x))
  77. assert zeta(x).rewrite(dirichlet_eta, a=2) == zeta(x)
  78. assert verify_numerically(dirichlet_eta(x), dirichlet_eta(x).rewrite(zeta), x)
  79. assert verify_numerically(zeta(x), zeta(x).rewrite(dirichlet_eta), x)
  80. assert zeta(x, a).rewrite(lerchphi) == lerchphi(1, x, a)
  81. assert polylog(s, z).rewrite(lerchphi) == lerchphi(z, s, 1)*z
  82. assert lerchphi(1, x, a).rewrite(zeta) == zeta(x, a)
  83. assert z*lerchphi(z, s, 1).rewrite(polylog) == polylog(s, z)
  84. def test_derivatives():
  85. from sympy.core.function import Derivative
  86. assert zeta(x, a).diff(x) == Derivative(zeta(x, a), x)
  87. assert zeta(x, a).diff(a) == -x*zeta(x + 1, a)
  88. assert lerchphi(
  89. z, s, a).diff(z) == (lerchphi(z, s - 1, a) - a*lerchphi(z, s, a))/z
  90. assert lerchphi(z, s, a).diff(a) == -s*lerchphi(z, s + 1, a)
  91. assert polylog(s, z).diff(z) == polylog(s - 1, z)/z
  92. b = randcplx()
  93. c = randcplx()
  94. assert td(zeta(b, x), x)
  95. assert td(polylog(b, z), z)
  96. assert td(lerchphi(c, b, x), x)
  97. assert td(lerchphi(x, b, c), x)
  98. raises(ArgumentIndexError, lambda: lerchphi(c, b, x).fdiff(2))
  99. raises(ArgumentIndexError, lambda: lerchphi(c, b, x).fdiff(4))
  100. raises(ArgumentIndexError, lambda: polylog(b, z).fdiff(1))
  101. raises(ArgumentIndexError, lambda: polylog(b, z).fdiff(3))
  102. def myexpand(func, target):
  103. expanded = expand_func(func)
  104. if target is not None:
  105. return expanded == target
  106. if expanded == func: # it didn't expand
  107. return False
  108. # check to see that the expanded and original evaluate to the same value
  109. subs = {}
  110. for a in func.free_symbols:
  111. subs[a] = randcplx()
  112. return abs(func.subs(subs).n()
  113. - expanded.replace(exp_polar, exp).subs(subs).n()) < 1e-10
  114. def test_polylog_expansion():
  115. assert polylog(s, 0) == 0
  116. assert polylog(s, 1) == zeta(s)
  117. assert polylog(s, -1) == -dirichlet_eta(s)
  118. assert polylog(s, exp_polar(I*pi*Rational(4, 3))) == polylog(s, exp(I*pi*Rational(4, 3)))
  119. assert polylog(s, exp_polar(I*pi)/3) == polylog(s, exp(I*pi)/3)
  120. assert myexpand(polylog(1, z), -log(1 - z))
  121. assert myexpand(polylog(0, z), z/(1 - z))
  122. assert myexpand(polylog(-1, z), z/(1 - z)**2)
  123. assert ((1-z)**3 * expand_func(polylog(-2, z))).simplify() == z*(1 + z)
  124. assert myexpand(polylog(-5, z), None)
  125. def test_polylog_series():
  126. assert polylog(1, z).series(z, n=5) == z + z**2/2 + z**3/3 + z**4/4 + O(z**5)
  127. assert polylog(1, sqrt(z)).series(z, n=3) == z/2 + z**2/4 + sqrt(z)\
  128. + z**(S(3)/2)/3 + z**(S(5)/2)/5 + O(z**3)
  129. # https://github.com/sympy/sympy/issues/9497
  130. assert polylog(S(3)/2, -z).series(z, 0, 5) == -z + sqrt(2)*z**2/4\
  131. - sqrt(3)*z**3/9 + z**4/8 + O(z**5)
  132. def test_issue_8404():
  133. i = Symbol('i', integer=True)
  134. assert Abs(Sum(1/(3*i + 1)**2, (i, 0, S.Infinity)).doit().n(4)
  135. - 1.122) < 0.001
  136. def test_polylog_values():
  137. assert polylog(2, 2) == pi**2/4 - I*pi*log(2)
  138. assert polylog(2, S.Half) == pi**2/12 - log(2)**2/2
  139. for z in [S.Half, 2, (sqrt(5)-1)/2, -(sqrt(5)-1)/2, -(sqrt(5)+1)/2, (3-sqrt(5))/2]:
  140. assert Abs(polylog(2, z).evalf() - polylog(2, z, evaluate=False).evalf()) < 1e-15
  141. z = Symbol("z")
  142. for s in [-1, 0]:
  143. for _ in range(10):
  144. assert verify_numerically(polylog(s, z), polylog(s, z, evaluate=False),
  145. z, a=-3, b=-2, c=S.Half, d=2)
  146. assert verify_numerically(polylog(s, z), polylog(s, z, evaluate=False),
  147. z, a=2, b=-2, c=5, d=2)
  148. from sympy.integrals.integrals import Integral
  149. assert polylog(0, Integral(1, (x, 0, 1))) == -S.Half
  150. def test_lerchphi_expansion():
  151. assert myexpand(lerchphi(1, s, a), zeta(s, a))
  152. assert myexpand(lerchphi(z, s, 1), polylog(s, z)/z)
  153. # direct summation
  154. assert myexpand(lerchphi(z, -1, a), a/(1 - z) + z/(1 - z)**2)
  155. assert myexpand(lerchphi(z, -3, a), None)
  156. # polylog reduction
  157. assert myexpand(lerchphi(z, s, S.Half),
  158. 2**(s - 1)*(polylog(s, sqrt(z))/sqrt(z)
  159. - polylog(s, polar_lift(-1)*sqrt(z))/sqrt(z)))
  160. assert myexpand(lerchphi(z, s, 2), -1/z + polylog(s, z)/z**2)
  161. assert myexpand(lerchphi(z, s, Rational(3, 2)), None)
  162. assert myexpand(lerchphi(z, s, Rational(7, 3)), None)
  163. assert myexpand(lerchphi(z, s, Rational(-1, 3)), None)
  164. assert myexpand(lerchphi(z, s, Rational(-5, 2)), None)
  165. # hurwitz zeta reduction
  166. assert myexpand(lerchphi(-1, s, a),
  167. 2**(-s)*zeta(s, a/2) - 2**(-s)*zeta(s, (a + 1)/2))
  168. assert myexpand(lerchphi(I, s, a), None)
  169. assert myexpand(lerchphi(-I, s, a), None)
  170. assert myexpand(lerchphi(exp(I*pi*Rational(2, 5)), s, a), None)
  171. def test_stieltjes():
  172. assert isinstance(stieltjes(x), stieltjes)
  173. assert isinstance(stieltjes(x, a), stieltjes)
  174. # Zero'th constant EulerGamma
  175. assert stieltjes(0) == S.EulerGamma
  176. assert stieltjes(0, 1) == S.EulerGamma
  177. # Not defined
  178. assert stieltjes(nan) is nan
  179. assert stieltjes(0, nan) is nan
  180. assert stieltjes(-1) is S.ComplexInfinity
  181. assert stieltjes(1.5) is S.ComplexInfinity
  182. assert stieltjes(z, 0) is S.ComplexInfinity
  183. assert stieltjes(z, -1) is S.ComplexInfinity
  184. def test_stieltjes_evalf():
  185. assert abs(stieltjes(0).evalf() - 0.577215664) < 1E-9
  186. assert abs(stieltjes(0, 0.5).evalf() - 1.963510026) < 1E-9
  187. assert abs(stieltjes(1, 2).evalf() + 0.072815845 ) < 1E-9
  188. def test_issue_10475():
  189. a = Symbol('a', extended_real=True)
  190. b = Symbol('b', extended_positive=True)
  191. s = Symbol('s', zero=False)
  192. assert zeta(2 + I).is_finite
  193. assert zeta(1).is_finite is False
  194. assert zeta(x).is_finite is None
  195. assert zeta(x + I).is_finite is None
  196. assert zeta(a).is_finite is None
  197. assert zeta(b).is_finite is None
  198. assert zeta(-b).is_finite is True
  199. assert zeta(b**2 - 2*b + 1).is_finite is None
  200. assert zeta(a + I).is_finite is True
  201. assert zeta(b + 1).is_finite is True
  202. assert zeta(s + 1).is_finite is True
  203. def test_issue_14177():
  204. n = Symbol('n', positive=True, integer=True)
  205. assert zeta(2*n) == (-1)**(n + 1)*2**(2*n - 1)*pi**(2*n)*bernoulli(2*n)/factorial(2*n)
  206. assert zeta(-n) == (-1)**(-n)*bernoulli(n + 1)/(n + 1)
  207. n = Symbol('n')
  208. assert zeta(2*n) == zeta(2*n) # As sign of z (= 2*n) is not determined