|
|
"""Numerical Methods for Holonomic Functions"""
from sympy.core.sympify import sympify from sympy.holonomic.holonomic import DMFsubs
from mpmath import mp
def _evalf(func, points, derivatives=False, method='RK4'): """
Numerical methods for numerical integration along a given set of points in the complex plane. """
ann = func.annihilator a = ann.order R = ann.parent.base K = R.get_field()
if method == 'Euler': meth = _euler else: meth = _rk4
dmf = [] for j in ann.listofpoly: dmf.append(K.new(j.rep))
red = [-dmf[i] / dmf[a] for i in range(a)]
y0 = func.y0 if len(y0) < a: raise TypeError("Not Enough Initial Conditions") x0 = func.x0 sol = [meth(red, x0, points[0], y0, a)]
for i, j in enumerate(points[1:]): sol.append(meth(red, points[i], j, sol[-1], a))
if not derivatives: return [sympify(i[0]) for i in sol] else: return sympify(sol)
def _euler(red, x0, x1, y0, a): """
Euler's method for numerical integration. From x0 to x1 with initial values given at x0 as vector y0. """
A = sympify(x0)._to_mpmath(mp.prec) B = sympify(x1)._to_mpmath(mp.prec) y_0 = [sympify(i)._to_mpmath(mp.prec) for i in y0] h = B - A f_0 = y_0[1:] f_0_n = 0
for i in range(a): f_0_n += sympify(DMFsubs(red[i], A, mpm=True))._to_mpmath(mp.prec) * y_0[i] f_0.append(f_0_n)
sol = [] for i in range(a): sol.append(y_0[i] + h * f_0[i])
return sol
def _rk4(red, x0, x1, y0, a): """
Runge-Kutta 4th order numerical method. """
A = sympify(x0)._to_mpmath(mp.prec) B = sympify(x1)._to_mpmath(mp.prec) y_0 = [sympify(i)._to_mpmath(mp.prec) for i in y0] h = B - A
f_0_n = 0 f_1_n = 0 f_2_n = 0 f_3_n = 0
f_0 = y_0[1:] for i in range(a): f_0_n += sympify(DMFsubs(red[i], A, mpm=True))._to_mpmath(mp.prec) * y_0[i] f_0.append(f_0_n)
f_1 = [y_0[i] + f_0[i]*h/2 for i in range(1, a)] for i in range(a): f_1_n += sympify(DMFsubs(red[i], A + h/2, mpm=True))._to_mpmath(mp.prec) * (y_0[i] + f_0[i]*h/2) f_1.append(f_1_n)
f_2 = [y_0[i] + f_1[i]*h/2 for i in range(1, a)] for i in range(a): f_2_n += sympify(DMFsubs(red[i], A + h/2, mpm=True))._to_mpmath(mp.prec) * (y_0[i] + f_1[i]*h/2) f_2.append(f_2_n)
f_3 = [y_0[i] + f_2[i]*h for i in range(1, a)] for i in range(a): f_3_n += sympify(DMFsubs(red[i], A + h, mpm=True))._to_mpmath(mp.prec) * (y_0[i] + f_2[i]*h) f_3.append(f_3_n)
sol = [] for i in range(a): sol.append(y_0[i] + h * (f_0[i]+2*f_1[i]+2*f_2[i]+f_3[i])/6)
return sol
|