|
|
import random
from sympy.core.basic import Basic from sympy.core.singleton import S from sympy.core.symbol import Symbol from sympy.core.sympify import sympify from sympy.functions.elementary.trigonometric import cos, sin from sympy.simplify.simplify import simplify as _simplify from sympy.utilities.decorator import doctest_depends_on from sympy.utilities.exceptions import sympy_deprecation_warning from sympy.utilities.iterables import is_sequence
from .common import ShapeError from .decompositions import _cholesky, _LDLdecomposition from .matrices import MatrixBase from .repmatrix import MutableRepMatrix, RepMatrix from .solvers import _lower_triangular_solve, _upper_triangular_solve
def _iszero(x): """Returns True if x is zero.""" return x.is_zero
class DenseMatrix(RepMatrix): """Matrix implementation based on DomainMatrix as the internal representation"""
# # DenseMatrix is a superclass for both MutableDenseMatrix and # ImmutableDenseMatrix. Methods shared by both classes but not for the # Sparse classes should be implemented here. #
is_MatrixExpr = False # type: bool
_op_priority = 10.01 _class_priority = 4
@property def _mat(self): sympy_deprecation_warning( """
The private _mat attribute of Matrix is deprecated. Use the .flat() method instead. """,
deprecated_since_version="1.9", active_deprecations_target="deprecated-private-matrix-attributes" )
return self.flat()
def _eval_inverse(self, **kwargs): return self.inv(method=kwargs.get('method', 'GE'), iszerofunc=kwargs.get('iszerofunc', _iszero), try_block_diag=kwargs.get('try_block_diag', False))
def as_immutable(self): """Returns an Immutable version of this Matrix
"""
from .immutable import ImmutableDenseMatrix as cls return cls._fromrep(self._rep.copy())
def as_mutable(self): """Returns a mutable version of this matrix
Examples ========
>>> from sympy import ImmutableMatrix >>> X = ImmutableMatrix([[1, 2], [3, 4]]) >>> Y = X.as_mutable() >>> Y[1, 1] = 5 # Can set values in Y >>> Y Matrix([ [1, 2], [3, 5]]) """
return Matrix(self)
def cholesky(self, hermitian=True): return _cholesky(self, hermitian=hermitian)
def LDLdecomposition(self, hermitian=True): return _LDLdecomposition(self, hermitian=hermitian)
def lower_triangular_solve(self, rhs): return _lower_triangular_solve(self, rhs)
def upper_triangular_solve(self, rhs): return _upper_triangular_solve(self, rhs)
cholesky.__doc__ = _cholesky.__doc__ LDLdecomposition.__doc__ = _LDLdecomposition.__doc__ lower_triangular_solve.__doc__ = _lower_triangular_solve.__doc__ upper_triangular_solve.__doc__ = _upper_triangular_solve.__doc__
def _force_mutable(x): """Return a matrix as a Matrix, otherwise return x.""" if getattr(x, 'is_Matrix', False): return x.as_mutable() elif isinstance(x, Basic): return x elif hasattr(x, '__array__'): a = x.__array__() if len(a.shape) == 0: return sympify(a) return Matrix(x) return x
class MutableDenseMatrix(DenseMatrix, MutableRepMatrix):
def simplify(self, **kwargs): """Applies simplify to the elements of a matrix in place.
This is a shortcut for M.applyfunc(lambda x: simplify(x, ratio, measure))
See Also ========
sympy.simplify.simplify.simplify """
for (i, j), element in self.todok().items(): self[i, j] = _simplify(element, **kwargs)
MutableMatrix = Matrix = MutableDenseMatrix
########### # Numpy Utility Functions: # list2numpy, matrix2numpy, symmarray, rot_axis[123] ###########
def list2numpy(l, dtype=object): # pragma: no cover """Converts Python list of SymPy expressions to a NumPy array.
See Also ========
matrix2numpy """
from numpy import empty a = empty(len(l), dtype) for i, s in enumerate(l): a[i] = s return a
def matrix2numpy(m, dtype=object): # pragma: no cover """Converts SymPy's matrix to a NumPy array.
See Also ========
list2numpy """
from numpy import empty a = empty(m.shape, dtype) for i in range(m.rows): for j in range(m.cols): a[i, j] = m[i, j] return a
def rot_axis3(theta): """Returns a rotation matrix for a rotation of theta (in radians) about
the 3-axis.
Examples ========
>>> from sympy import pi, rot_axis3
A rotation of pi/3 (60 degrees):
>>> theta = pi/3 >>> rot_axis3(theta) Matrix([ [ 1/2, sqrt(3)/2, 0], [-sqrt(3)/2, 1/2, 0], [ 0, 0, 1]])
If we rotate by pi/2 (90 degrees):
>>> rot_axis3(pi/2) Matrix([ [ 0, 1, 0], [-1, 0, 0], [ 0, 0, 1]])
See Also ========
rot_axis1: Returns a rotation matrix for a rotation of theta (in radians) about the 1-axis rot_axis2: Returns a rotation matrix for a rotation of theta (in radians) about the 2-axis """
ct = cos(theta) st = sin(theta) lil = ((ct, st, 0), (-st, ct, 0), (0, 0, 1)) return Matrix(lil)
def rot_axis2(theta): """Returns a rotation matrix for a rotation of theta (in radians) about
the 2-axis.
Examples ========
>>> from sympy import pi, rot_axis2
A rotation of pi/3 (60 degrees):
>>> theta = pi/3 >>> rot_axis2(theta) Matrix([ [ 1/2, 0, -sqrt(3)/2], [ 0, 1, 0], [sqrt(3)/2, 0, 1/2]])
If we rotate by pi/2 (90 degrees):
>>> rot_axis2(pi/2) Matrix([ [0, 0, -1], [0, 1, 0], [1, 0, 0]])
See Also ========
rot_axis1: Returns a rotation matrix for a rotation of theta (in radians) about the 1-axis rot_axis3: Returns a rotation matrix for a rotation of theta (in radians) about the 3-axis """
ct = cos(theta) st = sin(theta) lil = ((ct, 0, -st), (0, 1, 0), (st, 0, ct)) return Matrix(lil)
def rot_axis1(theta): """Returns a rotation matrix for a rotation of theta (in radians) about
the 1-axis.
Examples ========
>>> from sympy import pi, rot_axis1
A rotation of pi/3 (60 degrees):
>>> theta = pi/3 >>> rot_axis1(theta) Matrix([ [1, 0, 0], [0, 1/2, sqrt(3)/2], [0, -sqrt(3)/2, 1/2]])
If we rotate by pi/2 (90 degrees):
>>> rot_axis1(pi/2) Matrix([ [1, 0, 0], [0, 0, 1], [0, -1, 0]])
See Also ========
rot_axis2: Returns a rotation matrix for a rotation of theta (in radians) about the 2-axis rot_axis3: Returns a rotation matrix for a rotation of theta (in radians) about the 3-axis """
ct = cos(theta) st = sin(theta) lil = ((1, 0, 0), (0, ct, st), (0, -st, ct)) return Matrix(lil)
@doctest_depends_on(modules=('numpy',)) def symarray(prefix, shape, **kwargs): # pragma: no cover r"""Create a numpy ndarray of symbols (as an object array).
The created symbols are named ``prefix_i1_i2_``... You should thus provide a non-empty prefix if you want your symbols to be unique for different output arrays, as SymPy symbols with identical names are the same object.
Parameters ----------
prefix : string A prefix prepended to the name of every symbol.
shape : int or tuple Shape of the created array. If an int, the array is one-dimensional; for more than one dimension the shape must be a tuple.
\*\*kwargs : dict keyword arguments passed on to Symbol
Examples ======== These doctests require numpy.
>>> from sympy import symarray >>> symarray('', 3) [_0 _1 _2]
If you want multiple symarrays to contain distinct symbols, you *must* provide unique prefixes:
>>> a = symarray('', 3) >>> b = symarray('', 3) >>> a[0] == b[0] True >>> a = symarray('a', 3) >>> b = symarray('b', 3) >>> a[0] == b[0] False
Creating symarrays with a prefix:
>>> symarray('a', 3) [a_0 a_1 a_2]
For more than one dimension, the shape must be given as a tuple:
>>> symarray('a', (2, 3)) [[a_0_0 a_0_1 a_0_2] [a_1_0 a_1_1 a_1_2]] >>> symarray('a', (2, 3, 2)) [[[a_0_0_0 a_0_0_1] [a_0_1_0 a_0_1_1] [a_0_2_0 a_0_2_1]] <BLANKLINE> [[a_1_0_0 a_1_0_1] [a_1_1_0 a_1_1_1] [a_1_2_0 a_1_2_1]]]
For setting assumptions of the underlying Symbols:
>>> [s.is_real for s in symarray('a', 2, real=True)] [True, True] """
from numpy import empty, ndindex arr = empty(shape, dtype=object) for index in ndindex(shape): arr[index] = Symbol('%s_%s' % (prefix, '_'.join(map(str, index))), **kwargs) return arr
############### # Functions ###############
def casoratian(seqs, n, zero=True): """Given linear difference operator L of order 'k' and homogeneous
equation Ly = 0 we want to compute kernel of L, which is a set of 'k' sequences: a(n), b(n), ... z(n).
Solutions of L are linearly independent iff their Casoratian, denoted as C(a, b, ..., z), do not vanish for n = 0.
Casoratian is defined by k x k determinant::
+ a(n) b(n) . . . z(n) + | a(n+1) b(n+1) . . . z(n+1) | | . . . . | | . . . . | | . . . . | + a(n+k-1) b(n+k-1) . . . z(n+k-1) +
It proves very useful in rsolve_hyper() where it is applied to a generating set of a recurrence to factor out linearly dependent solutions and return a basis:
>>> from sympy import Symbol, casoratian, factorial >>> n = Symbol('n', integer=True)
Exponential and factorial are linearly independent:
>>> casoratian([2**n, factorial(n)], n) != 0 True
"""
seqs = list(map(sympify, seqs))
if not zero: f = lambda i, j: seqs[j].subs(n, n + i) else: f = lambda i, j: seqs[j].subs(n, i)
k = len(seqs)
return Matrix(k, k, f).det()
def eye(*args, **kwargs): """Create square identity matrix n x n
See Also ========
diag zeros ones """
return Matrix.eye(*args, **kwargs)
def diag(*values, strict=True, unpack=False, **kwargs): """Returns a matrix with the provided values placed on the
diagonal. If non-square matrices are included, they will produce a block-diagonal matrix.
Examples ========
This version of diag is a thin wrapper to Matrix.diag that differs in that it treats all lists like matrices -- even when a single list is given. If this is not desired, either put a `*` before the list or set `unpack=True`.
>>> from sympy import diag
>>> diag([1, 2, 3], unpack=True) # = diag(1,2,3) or diag(*[1,2,3]) Matrix([ [1, 0, 0], [0, 2, 0], [0, 0, 3]])
>>> diag([1, 2, 3]) # a column vector Matrix([ [1], [2], [3]])
See Also ======== .common.MatrixCommon.eye .common.MatrixCommon.diagonal - to extract a diagonal .common.MatrixCommon.diag .expressions.blockmatrix.BlockMatrix """
return Matrix.diag(*values, strict=strict, unpack=unpack, **kwargs)
def GramSchmidt(vlist, orthonormal=False): """Apply the Gram-Schmidt process to a set of vectors.
Parameters ==========
vlist : List of Matrix Vectors to be orthogonalized for.
orthonormal : Bool, optional If true, return an orthonormal basis.
Returns =======
vlist : List of Matrix Orthogonalized vectors
Notes =====
This routine is mostly duplicate from ``Matrix.orthogonalize``, except for some difference that this always raises error when linearly dependent vectors are found, and the keyword ``normalize`` has been named as ``orthonormal`` in this function.
See Also ========
.matrices.MatrixSubspaces.orthogonalize
References ==========
.. [1] https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process """
return MutableDenseMatrix.orthogonalize( *vlist, normalize=orthonormal, rankcheck=True )
def hessian(f, varlist, constraints=()): """Compute Hessian matrix for a function f wrt parameters in varlist
which may be given as a sequence or a row/column vector. A list of constraints may optionally be given.
Examples ========
>>> from sympy import Function, hessian, pprint >>> from sympy.abc import x, y >>> f = Function('f')(x, y) >>> g1 = Function('g')(x, y) >>> g2 = x**2 + 3*y >>> pprint(hessian(f, (x, y), [g1, g2])) [ d d ] [ 0 0 --(g(x, y)) --(g(x, y)) ] [ dx dy ] [ ] [ 0 0 2*x 3 ] [ ] [ 2 2 ] [d d d ] [--(g(x, y)) 2*x ---(f(x, y)) -----(f(x, y))] [dx 2 dy dx ] [ dx ] [ ] [ 2 2 ] [d d d ] [--(g(x, y)) 3 -----(f(x, y)) ---(f(x, y)) ] [dy dy dx 2 ] [ dy ]
References ==========
.. [1] https://en.wikipedia.org/wiki/Hessian_matrix
See Also ========
sympy.matrices.matrices.MatrixCalculus.jacobian wronskian """
# f is the expression representing a function f, return regular matrix if isinstance(varlist, MatrixBase): if 1 not in varlist.shape: raise ShapeError("`varlist` must be a column or row vector.") if varlist.cols == 1: varlist = varlist.T varlist = varlist.tolist()[0] if is_sequence(varlist): n = len(varlist) if not n: raise ShapeError("`len(varlist)` must not be zero.") else: raise ValueError("Improper variable list in hessian function") if not getattr(f, 'diff'): # check differentiability raise ValueError("Function `f` (%s) is not differentiable" % f) m = len(constraints) N = m + n out = zeros(N) for k, g in enumerate(constraints): if not getattr(g, 'diff'): # check differentiability raise ValueError("Function `f` (%s) is not differentiable" % f) for i in range(n): out[k, i + m] = g.diff(varlist[i]) for i in range(n): for j in range(i, n): out[i + m, j + m] = f.diff(varlist[i]).diff(varlist[j]) for i in range(N): for j in range(i + 1, N): out[j, i] = out[i, j] return out
def jordan_cell(eigenval, n): """
Create a Jordan block:
Examples ========
>>> from sympy import jordan_cell >>> from sympy.abc import x >>> jordan_cell(x, 4) Matrix([ [x, 1, 0, 0], [0, x, 1, 0], [0, 0, x, 1], [0, 0, 0, x]]) """
return Matrix.jordan_block(size=n, eigenvalue=eigenval)
def matrix_multiply_elementwise(A, B): """Return the Hadamard product (elementwise product) of A and B
>>> from sympy import Matrix, matrix_multiply_elementwise >>> A = Matrix([[0, 1, 2], [3, 4, 5]]) >>> B = Matrix([[1, 10, 100], [100, 10, 1]]) >>> matrix_multiply_elementwise(A, B) Matrix([ [ 0, 10, 200], [300, 40, 5]])
See Also ========
sympy.matrices.common.MatrixCommon.__mul__ """
return A.multiply_elementwise(B)
def ones(*args, **kwargs): """Returns a matrix of ones with ``rows`` rows and ``cols`` columns;
if ``cols`` is omitted a square matrix will be returned.
See Also ========
zeros eye diag """
if 'c' in kwargs: kwargs['cols'] = kwargs.pop('c')
return Matrix.ones(*args, **kwargs)
def randMatrix(r, c=None, min=0, max=99, seed=None, symmetric=False, percent=100, prng=None): """Create random matrix with dimensions ``r`` x ``c``. If ``c`` is omitted
the matrix will be square. If ``symmetric`` is True the matrix must be square. If ``percent`` is less than 100 then only approximately the given percentage of elements will be non-zero.
The pseudo-random number generator used to generate matrix is chosen in the following way.
* If ``prng`` is supplied, it will be used as random number generator. It should be an instance of ``random.Random``, or at least have ``randint`` and ``shuffle`` methods with same signatures. * if ``prng`` is not supplied but ``seed`` is supplied, then new ``random.Random`` with given ``seed`` will be created; * otherwise, a new ``random.Random`` with default seed will be used.
Examples ========
>>> from sympy import randMatrix >>> randMatrix(3) # doctest:+SKIP [25, 45, 27] [44, 54, 9] [23, 96, 46] >>> randMatrix(3, 2) # doctest:+SKIP [87, 29] [23, 37] [90, 26] >>> randMatrix(3, 3, 0, 2) # doctest:+SKIP [0, 2, 0] [2, 0, 1] [0, 0, 1] >>> randMatrix(3, symmetric=True) # doctest:+SKIP [85, 26, 29] [26, 71, 43] [29, 43, 57] >>> A = randMatrix(3, seed=1) >>> B = randMatrix(3, seed=2) >>> A == B False >>> A == randMatrix(3, seed=1) True >>> randMatrix(3, symmetric=True, percent=50) # doctest:+SKIP [77, 70, 0], [70, 0, 0], [ 0, 0, 88] """
# Note that ``Random()`` is equivalent to ``Random(None)`` prng = prng or random.Random(seed)
if c is None: c = r
if symmetric and r != c: raise ValueError('For symmetric matrices, r must equal c, but %i != %i' % (r, c))
ij = range(r * c) if percent != 100: ij = prng.sample(ij, int(len(ij)*percent // 100))
m = zeros(r, c)
if not symmetric: for ijk in ij: i, j = divmod(ijk, c) m[i, j] = prng.randint(min, max) else: for ijk in ij: i, j = divmod(ijk, c) if i <= j: m[i, j] = m[j, i] = prng.randint(min, max)
return m
def wronskian(functions, var, method='bareiss'): """
Compute Wronskian for [] of functions
::
| f1 f2 ... fn | | f1' f2' ... fn' | | . . . . | W(f1, ..., fn) = | . . . . | | . . . . | | (n) (n) (n) | | D (f1) D (f2) ... D (fn) |
see: https://en.wikipedia.org/wiki/Wronskian
See Also ========
sympy.matrices.matrices.MatrixCalculus.jacobian hessian """
for index in range(0, len(functions)): functions[index] = sympify(functions[index]) n = len(functions) if n == 0: return S.One W = Matrix(n, n, lambda i, j: functions[i].diff(var, j)) return W.det(method)
def zeros(*args, **kwargs): """Returns a matrix of zeros with ``rows`` rows and ``cols`` columns;
if ``cols`` is omitted a square matrix will be returned.
See Also ========
ones eye diag """
if 'c' in kwargs: kwargs['cols'] = kwargs.pop('c')
return Matrix.zeros(*args, **kwargs)
|