You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
|
|
from sympy.core import Basic from sympy.functions import adjoint, conjugate from sympy.matrices.expressions.transpose import transpose from sympy.matrices.expressions.matexpr import MatrixExpr
class Adjoint(MatrixExpr): """
The Hermitian adjoint of a matrix expression.
This is a symbolic object that simply stores its argument without evaluating it. To actually compute the adjoint, use the ``adjoint()`` function.
Examples ========
>>> from sympy import MatrixSymbol, Adjoint, adjoint >>> A = MatrixSymbol('A', 3, 5) >>> B = MatrixSymbol('B', 5, 3) >>> Adjoint(A*B) Adjoint(A*B) >>> adjoint(A*B) Adjoint(B)*Adjoint(A) >>> adjoint(A*B) == Adjoint(A*B) False >>> adjoint(A*B) == Adjoint(A*B).doit() True """
is_Adjoint = True
def doit(self, **hints): arg = self.arg if hints.get('deep', True) and isinstance(arg, Basic): return adjoint(arg.doit(**hints)) else: return adjoint(self.arg)
@property def arg(self): return self.args[0]
@property def shape(self): return self.arg.shape[::-1]
def _entry(self, i, j, **kwargs): return conjugate(self.arg._entry(j, i, **kwargs))
def _eval_adjoint(self): return self.arg
def _eval_conjugate(self): return transpose(self.arg)
def _eval_trace(self): from sympy.matrices.expressions.trace import Trace return conjugate(Trace(self.arg))
def _eval_transpose(self): return conjugate(self.arg)
|