|
|
from sympy.core import symbols, S from sympy.functions import adjoint, conjugate, transpose from sympy.matrices.expressions import MatrixSymbol, Adjoint, trace, Transpose from sympy.matrices import eye, Matrix
n, m, l, k, p = symbols('n m l k p', integer=True) A = MatrixSymbol('A', n, m) B = MatrixSymbol('B', m, l) C = MatrixSymbol('C', n, n)
def test_adjoint(): Sq = MatrixSymbol('Sq', n, n)
assert Adjoint(A).shape == (m, n) assert Adjoint(A*B).shape == (l, n) assert adjoint(Adjoint(A)) == A assert isinstance(Adjoint(Adjoint(A)), Adjoint)
assert conjugate(Adjoint(A)) == Transpose(A) assert transpose(Adjoint(A)) == Adjoint(Transpose(A))
assert Adjoint(eye(3)).doit() == eye(3)
assert Adjoint(S(5)).doit() == S(5)
assert Adjoint(Matrix([[1, 2], [3, 4]])).doit() == Matrix([[1, 3], [2, 4]])
assert adjoint(trace(Sq)) == conjugate(trace(Sq)) assert trace(adjoint(Sq)) == conjugate(trace(Sq))
assert Adjoint(Sq)[0, 1] == conjugate(Sq[1, 0])
assert Adjoint(A*B).doit() == Adjoint(B) * Adjoint(A)
|