m2m模型翻译
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

538 lines
16 KiB

6 months ago
  1. from sympy.concrete.summations import Sum
  2. from sympy.core.exprtools import gcd_terms
  3. from sympy.core.function import (diff, expand)
  4. from sympy.core.relational import Eq
  5. from sympy.core.symbol import (Dummy, Symbol)
  6. from sympy.functions.special.tensor_functions import KroneckerDelta
  7. from sympy.matrices.dense import zeros
  8. from sympy.polys.polytools import factor
  9. from sympy.core import (S, symbols, Add, Mul, SympifyError, Rational,
  10. Function)
  11. from sympy.functions import sin, cos, tan, sqrt, cbrt, exp
  12. from sympy.simplify import simplify
  13. from sympy.matrices import (ImmutableMatrix, Inverse, MatAdd, MatMul,
  14. MatPow, Matrix, MatrixExpr, MatrixSymbol, ShapeError,
  15. SparseMatrix, Transpose, Adjoint, NonSquareMatrixError, MatrixSet)
  16. from sympy.matrices.expressions.determinant import Determinant, det
  17. from sympy.matrices.expressions.matexpr import MatrixElement
  18. from sympy.matrices.expressions.special import ZeroMatrix, Identity
  19. from sympy.testing.pytest import raises, XFAIL
  20. n, m, l, k, p = symbols('n m l k p', integer=True)
  21. x = symbols('x')
  22. A = MatrixSymbol('A', n, m)
  23. B = MatrixSymbol('B', m, l)
  24. C = MatrixSymbol('C', n, n)
  25. D = MatrixSymbol('D', n, n)
  26. E = MatrixSymbol('E', m, n)
  27. w = MatrixSymbol('w', n, 1)
  28. def test_matrix_symbol_creation():
  29. assert MatrixSymbol('A', 2, 2)
  30. assert MatrixSymbol('A', 0, 0)
  31. raises(ValueError, lambda: MatrixSymbol('A', -1, 2))
  32. raises(ValueError, lambda: MatrixSymbol('A', 2.0, 2))
  33. raises(ValueError, lambda: MatrixSymbol('A', 2j, 2))
  34. raises(ValueError, lambda: MatrixSymbol('A', 2, -1))
  35. raises(ValueError, lambda: MatrixSymbol('A', 2, 2.0))
  36. raises(ValueError, lambda: MatrixSymbol('A', 2, 2j))
  37. n = symbols('n')
  38. assert MatrixSymbol('A', n, n)
  39. n = symbols('n', integer=False)
  40. raises(ValueError, lambda: MatrixSymbol('A', n, n))
  41. n = symbols('n', negative=True)
  42. raises(ValueError, lambda: MatrixSymbol('A', n, n))
  43. def test_shape():
  44. assert A.shape == (n, m)
  45. assert (A*B).shape == (n, l)
  46. raises(ShapeError, lambda: B*A)
  47. def test_matexpr():
  48. assert (x*A).shape == A.shape
  49. assert (x*A).__class__ == MatMul
  50. assert 2*A - A - A == ZeroMatrix(*A.shape)
  51. assert (A*B).shape == (n, l)
  52. def test_subs():
  53. A = MatrixSymbol('A', n, m)
  54. B = MatrixSymbol('B', m, l)
  55. C = MatrixSymbol('C', m, l)
  56. assert A.subs(n, m).shape == (m, m)
  57. assert (A*B).subs(B, C) == A*C
  58. assert (A*B).subs(l, n).is_square
  59. A = SparseMatrix([[1, 2], [3, 4]])
  60. B = Matrix([[1, 2], [3, 4]])
  61. C, D = MatrixSymbol('C', 2, 2), MatrixSymbol('D', 2, 2)
  62. assert (C*D).subs({C: A, D: B}) == MatMul(A, B)
  63. def test_addition():
  64. A = MatrixSymbol('A', n, m)
  65. B = MatrixSymbol('B', n, m)
  66. assert isinstance(A + B, MatAdd)
  67. assert (A + B).shape == A.shape
  68. assert isinstance(A - A + 2*B, MatMul)
  69. raises(ShapeError, lambda: A + B.T)
  70. raises(TypeError, lambda: A + 1)
  71. raises(TypeError, lambda: 5 + A)
  72. raises(TypeError, lambda: 5 - A)
  73. assert A + ZeroMatrix(n, m) - A == ZeroMatrix(n, m)
  74. with raises(TypeError):
  75. ZeroMatrix(n,m) + S.Zero
  76. def test_multiplication():
  77. A = MatrixSymbol('A', n, m)
  78. B = MatrixSymbol('B', m, l)
  79. C = MatrixSymbol('C', n, n)
  80. assert (2*A*B).shape == (n, l)
  81. assert (A*0*B) == ZeroMatrix(n, l)
  82. raises(ShapeError, lambda: B*A)
  83. assert (2*A).shape == A.shape
  84. assert A * ZeroMatrix(m, m) * B == ZeroMatrix(n, l)
  85. assert C * Identity(n) * C.I == Identity(n)
  86. assert B/2 == S.Half*B
  87. raises(NotImplementedError, lambda: 2/B)
  88. A = MatrixSymbol('A', n, n)
  89. B = MatrixSymbol('B', n, n)
  90. assert Identity(n) * (A + B) == A + B
  91. assert A**2*A == A**3
  92. assert A**2*(A.I)**3 == A.I
  93. assert A**3*(A.I)**2 == A
  94. def test_MatPow():
  95. A = MatrixSymbol('A', n, n)
  96. AA = MatPow(A, 2)
  97. assert AA.exp == 2
  98. assert AA.base == A
  99. assert (A**n).exp == n
  100. assert A**0 == Identity(n)
  101. assert A**1 == A
  102. assert A**2 == AA
  103. assert A**-1 == Inverse(A)
  104. assert (A**-1)**-1 == A
  105. assert (A**2)**3 == A**6
  106. assert A**S.Half == sqrt(A)
  107. assert A**Rational(1, 3) == cbrt(A)
  108. raises(NonSquareMatrixError, lambda: MatrixSymbol('B', 3, 2)**2)
  109. def test_MatrixSymbol():
  110. n, m, t = symbols('n,m,t')
  111. X = MatrixSymbol('X', n, m)
  112. assert X.shape == (n, m)
  113. raises(TypeError, lambda: MatrixSymbol('X', n, m)(t)) # issue 5855
  114. assert X.doit() == X
  115. def test_dense_conversion():
  116. X = MatrixSymbol('X', 2, 2)
  117. assert ImmutableMatrix(X) == ImmutableMatrix(2, 2, lambda i, j: X[i, j])
  118. assert Matrix(X) == Matrix(2, 2, lambda i, j: X[i, j])
  119. def test_free_symbols():
  120. assert (C*D).free_symbols == {C, D}
  121. def test_zero_matmul():
  122. assert isinstance(S.Zero * MatrixSymbol('X', 2, 2), MatrixExpr)
  123. def test_matadd_simplify():
  124. A = MatrixSymbol('A', 1, 1)
  125. assert simplify(MatAdd(A, ImmutableMatrix([[sin(x)**2 + cos(x)**2]]))) == \
  126. MatAdd(A, Matrix([[1]]))
  127. def test_matmul_simplify():
  128. A = MatrixSymbol('A', 1, 1)
  129. assert simplify(MatMul(A, ImmutableMatrix([[sin(x)**2 + cos(x)**2]]))) == \
  130. MatMul(A, Matrix([[1]]))
  131. def test_invariants():
  132. A = MatrixSymbol('A', n, m)
  133. B = MatrixSymbol('B', m, l)
  134. X = MatrixSymbol('X', n, n)
  135. objs = [Identity(n), ZeroMatrix(m, n), A, MatMul(A, B), MatAdd(A, A),
  136. Transpose(A), Adjoint(A), Inverse(X), MatPow(X, 2), MatPow(X, -1),
  137. MatPow(X, 0)]
  138. for obj in objs:
  139. assert obj == obj.__class__(*obj.args)
  140. def test_indexing():
  141. A = MatrixSymbol('A', n, m)
  142. A[1, 2]
  143. A[l, k]
  144. A[l+1, k+1]
  145. def test_single_indexing():
  146. A = MatrixSymbol('A', 2, 3)
  147. assert A[1] == A[0, 1]
  148. assert A[int(1)] == A[0, 1]
  149. assert A[3] == A[1, 0]
  150. assert list(A[:2, :2]) == [A[0, 0], A[0, 1], A[1, 0], A[1, 1]]
  151. raises(IndexError, lambda: A[6])
  152. raises(IndexError, lambda: A[n])
  153. B = MatrixSymbol('B', n, m)
  154. raises(IndexError, lambda: B[1])
  155. B = MatrixSymbol('B', n, 3)
  156. assert B[3] == B[1, 0]
  157. def test_MatrixElement_commutative():
  158. assert A[0, 1]*A[1, 0] == A[1, 0]*A[0, 1]
  159. def test_MatrixSymbol_determinant():
  160. A = MatrixSymbol('A', 4, 4)
  161. assert A.as_explicit().det() == A[0, 0]*A[1, 1]*A[2, 2]*A[3, 3] - \
  162. A[0, 0]*A[1, 1]*A[2, 3]*A[3, 2] - A[0, 0]*A[1, 2]*A[2, 1]*A[3, 3] + \
  163. A[0, 0]*A[1, 2]*A[2, 3]*A[3, 1] + A[0, 0]*A[1, 3]*A[2, 1]*A[3, 2] - \
  164. A[0, 0]*A[1, 3]*A[2, 2]*A[3, 1] - A[0, 1]*A[1, 0]*A[2, 2]*A[3, 3] + \
  165. A[0, 1]*A[1, 0]*A[2, 3]*A[3, 2] + A[0, 1]*A[1, 2]*A[2, 0]*A[3, 3] - \
  166. A[0, 1]*A[1, 2]*A[2, 3]*A[3, 0] - A[0, 1]*A[1, 3]*A[2, 0]*A[3, 2] + \
  167. A[0, 1]*A[1, 3]*A[2, 2]*A[3, 0] + A[0, 2]*A[1, 0]*A[2, 1]*A[3, 3] - \
  168. A[0, 2]*A[1, 0]*A[2, 3]*A[3, 1] - A[0, 2]*A[1, 1]*A[2, 0]*A[3, 3] + \
  169. A[0, 2]*A[1, 1]*A[2, 3]*A[3, 0] + A[0, 2]*A[1, 3]*A[2, 0]*A[3, 1] - \
  170. A[0, 2]*A[1, 3]*A[2, 1]*A[3, 0] - A[0, 3]*A[1, 0]*A[2, 1]*A[3, 2] + \
  171. A[0, 3]*A[1, 0]*A[2, 2]*A[3, 1] + A[0, 3]*A[1, 1]*A[2, 0]*A[3, 2] - \
  172. A[0, 3]*A[1, 1]*A[2, 2]*A[3, 0] - A[0, 3]*A[1, 2]*A[2, 0]*A[3, 1] + \
  173. A[0, 3]*A[1, 2]*A[2, 1]*A[3, 0]
  174. B = MatrixSymbol('B', 4, 4)
  175. assert Determinant(A + B).doit() == det(A + B) == (A + B).det()
  176. def test_MatrixElement_diff():
  177. assert (A[3, 0]*A[0, 0]).diff(A[0, 0]) == A[3, 0]
  178. def test_MatrixElement_doit():
  179. u = MatrixSymbol('u', 2, 1)
  180. v = ImmutableMatrix([3, 5])
  181. assert u[0, 0].subs(u, v).doit() == v[0, 0]
  182. def test_identity_powers():
  183. M = Identity(n)
  184. assert MatPow(M, 3).doit() == M**3
  185. assert M**n == M
  186. assert MatPow(M, 0).doit() == M**2
  187. assert M**-2 == M
  188. assert MatPow(M, -2).doit() == M**0
  189. N = Identity(3)
  190. assert MatPow(N, 2).doit() == N**n
  191. assert MatPow(N, 3).doit() == N
  192. assert MatPow(N, -2).doit() == N**4
  193. assert MatPow(N, 2).doit() == N**0
  194. def test_Zero_power():
  195. z1 = ZeroMatrix(n, n)
  196. assert z1**4 == z1
  197. raises(ValueError, lambda:z1**-2)
  198. assert z1**0 == Identity(n)
  199. assert MatPow(z1, 2).doit() == z1**2
  200. raises(ValueError, lambda:MatPow(z1, -2).doit())
  201. z2 = ZeroMatrix(3, 3)
  202. assert MatPow(z2, 4).doit() == z2**4
  203. raises(ValueError, lambda:z2**-3)
  204. assert z2**3 == MatPow(z2, 3).doit()
  205. assert z2**0 == Identity(3)
  206. raises(ValueError, lambda:MatPow(z2, -1).doit())
  207. def test_matrixelement_diff():
  208. dexpr = diff((D*w)[k,0], w[p,0])
  209. assert w[k, p].diff(w[k, p]) == 1
  210. assert w[k, p].diff(w[0, 0]) == KroneckerDelta(0, k, (0, n-1))*KroneckerDelta(0, p, (0, 0))
  211. _i_1 = Dummy("_i_1")
  212. assert dexpr.dummy_eq(Sum(KroneckerDelta(_i_1, p, (0, n-1))*D[k, _i_1], (_i_1, 0, n - 1)))
  213. assert dexpr.doit() == D[k, p]
  214. def test_MatrixElement_with_values():
  215. x, y, z, w = symbols("x y z w")
  216. M = Matrix([[x, y], [z, w]])
  217. i, j = symbols("i, j")
  218. Mij = M[i, j]
  219. assert isinstance(Mij, MatrixElement)
  220. Ms = SparseMatrix([[2, 3], [4, 5]])
  221. msij = Ms[i, j]
  222. assert isinstance(msij, MatrixElement)
  223. for oi, oj in [(0, 0), (0, 1), (1, 0), (1, 1)]:
  224. assert Mij.subs({i: oi, j: oj}) == M[oi, oj]
  225. assert msij.subs({i: oi, j: oj}) == Ms[oi, oj]
  226. A = MatrixSymbol("A", 2, 2)
  227. assert A[0, 0].subs(A, M) == x
  228. assert A[i, j].subs(A, M) == M[i, j]
  229. assert M[i, j].subs(M, A) == A[i, j]
  230. assert isinstance(M[3*i - 2, j], MatrixElement)
  231. assert M[3*i - 2, j].subs({i: 1, j: 0}) == M[1, 0]
  232. assert isinstance(M[i, 0], MatrixElement)
  233. assert M[i, 0].subs(i, 0) == M[0, 0]
  234. assert M[0, i].subs(i, 1) == M[0, 1]
  235. assert M[i, j].diff(x) == Matrix([[1, 0], [0, 0]])[i, j]
  236. raises(ValueError, lambda: M[i, 2])
  237. raises(ValueError, lambda: M[i, -1])
  238. raises(ValueError, lambda: M[2, i])
  239. raises(ValueError, lambda: M[-1, i])
  240. def test_inv():
  241. B = MatrixSymbol('B', 3, 3)
  242. assert B.inv() == B**-1
  243. # https://github.com/sympy/sympy/issues/19162
  244. X = MatrixSymbol('X', 1, 1).as_explicit()
  245. assert X.inv() == Matrix([[1/X[0, 0]]])
  246. X = MatrixSymbol('X', 2, 2).as_explicit()
  247. detX = X[0, 0]*X[1, 1] - X[0, 1]*X[1, 0]
  248. invX = Matrix([[ X[1, 1], -X[0, 1]],
  249. [-X[1, 0], X[0, 0]]]) / detX
  250. assert X.inv() == invX
  251. @XFAIL
  252. def test_factor_expand():
  253. A = MatrixSymbol("A", n, n)
  254. B = MatrixSymbol("B", n, n)
  255. expr1 = (A + B)*(C + D)
  256. expr2 = A*C + B*C + A*D + B*D
  257. assert expr1 != expr2
  258. assert expand(expr1) == expr2
  259. assert factor(expr2) == expr1
  260. expr = B**(-1)*(A**(-1)*B**(-1) - A**(-1)*C*B**(-1))**(-1)*A**(-1)
  261. I = Identity(n)
  262. # Ideally we get the first, but we at least don't want a wrong answer
  263. assert factor(expr) in [I - C, B**-1*(A**-1*(I - C)*B**-1)**-1*A**-1]
  264. def test_issue_2749():
  265. A = MatrixSymbol("A", 5, 2)
  266. assert (A.T * A).I.as_explicit() == Matrix([[(A.T * A).I[0, 0], (A.T * A).I[0, 1]], \
  267. [(A.T * A).I[1, 0], (A.T * A).I[1, 1]]])
  268. def test_issue_2750():
  269. x = MatrixSymbol('x', 1, 1)
  270. assert (x.T*x).as_explicit()**-1 == Matrix([[x[0, 0]**(-2)]])
  271. def test_issue_7842():
  272. A = MatrixSymbol('A', 3, 1)
  273. B = MatrixSymbol('B', 2, 1)
  274. assert Eq(A, B) == False
  275. assert Eq(A[1,0], B[1, 0]).func is Eq
  276. A = ZeroMatrix(2, 3)
  277. B = ZeroMatrix(2, 3)
  278. assert Eq(A, B) == True
  279. def test_issue_21195():
  280. t = symbols('t')
  281. x = Function('x')(t)
  282. dx = x.diff(t)
  283. exp1 = cos(x) + cos(x)*dx
  284. exp2 = sin(x) + tan(x)*(dx.diff(t))
  285. exp3 = sin(x)*sin(t)*(dx.diff(t)).diff(t)
  286. A = Matrix([[exp1], [exp2], [exp3]])
  287. B = Matrix([[exp1.diff(x)], [exp2.diff(x)], [exp3.diff(x)]])
  288. assert A.diff(x) == B
  289. def test_MatMul_postprocessor():
  290. z = zeros(2)
  291. z1 = ZeroMatrix(2, 2)
  292. assert Mul(0, z) == Mul(z, 0) in [z, z1]
  293. M = Matrix([[1, 2], [3, 4]])
  294. Mx = Matrix([[x, 2*x], [3*x, 4*x]])
  295. assert Mul(x, M) == Mul(M, x) == Mx
  296. A = MatrixSymbol("A", 2, 2)
  297. assert Mul(A, M) == MatMul(A, M)
  298. assert Mul(M, A) == MatMul(M, A)
  299. # Scalars should be absorbed into constant matrices
  300. a = Mul(x, M, A)
  301. b = Mul(M, x, A)
  302. c = Mul(M, A, x)
  303. assert a == b == c == MatMul(Mx, A)
  304. a = Mul(x, A, M)
  305. b = Mul(A, x, M)
  306. c = Mul(A, M, x)
  307. assert a == b == c == MatMul(A, Mx)
  308. assert Mul(M, M) == M**2
  309. assert Mul(A, M, M) == MatMul(A, M**2)
  310. assert Mul(M, M, A) == MatMul(M**2, A)
  311. assert Mul(M, A, M) == MatMul(M, A, M)
  312. assert Mul(A, x, M, M, x) == MatMul(A, Mx**2)
  313. @XFAIL
  314. def test_MatAdd_postprocessor_xfail():
  315. # This is difficult to get working because of the way that Add processes
  316. # its args.
  317. z = zeros(2)
  318. assert Add(z, S.NaN) == Add(S.NaN, z)
  319. def test_MatAdd_postprocessor():
  320. # Some of these are nonsensical, but we do not raise errors for Add
  321. # because that breaks algorithms that want to replace matrices with dummy
  322. # symbols.
  323. z = zeros(2)
  324. assert Add(0, z) == Add(z, 0) == z
  325. a = Add(S.Infinity, z)
  326. assert a == Add(z, S.Infinity)
  327. assert isinstance(a, Add)
  328. assert a.args == (S.Infinity, z)
  329. a = Add(S.ComplexInfinity, z)
  330. assert a == Add(z, S.ComplexInfinity)
  331. assert isinstance(a, Add)
  332. assert a.args == (S.ComplexInfinity, z)
  333. a = Add(z, S.NaN)
  334. # assert a == Add(S.NaN, z) # See the XFAIL above
  335. assert isinstance(a, Add)
  336. assert a.args == (S.NaN, z)
  337. M = Matrix([[1, 2], [3, 4]])
  338. a = Add(x, M)
  339. assert a == Add(M, x)
  340. assert isinstance(a, Add)
  341. assert a.args == (x, M)
  342. A = MatrixSymbol("A", 2, 2)
  343. assert Add(A, M) == Add(M, A) == A + M
  344. # Scalars should be absorbed into constant matrices (producing an error)
  345. a = Add(x, M, A)
  346. assert a == Add(M, x, A) == Add(M, A, x) == Add(x, A, M) == Add(A, x, M) == Add(A, M, x)
  347. assert isinstance(a, Add)
  348. assert a.args == (x, A + M)
  349. assert Add(M, M) == 2*M
  350. assert Add(M, A, M) == Add(M, M, A) == Add(A, M, M) == A + 2*M
  351. a = Add(A, x, M, M, x)
  352. assert isinstance(a, Add)
  353. assert a.args == (2*x, A + 2*M)
  354. def test_simplify_matrix_expressions():
  355. # Various simplification functions
  356. assert type(gcd_terms(C*D + D*C)) == MatAdd
  357. a = gcd_terms(2*C*D + 4*D*C)
  358. assert type(a) == MatAdd
  359. assert a.args == (2*C*D, 4*D*C)
  360. def test_exp():
  361. A = MatrixSymbol('A', 2, 2)
  362. B = MatrixSymbol('B', 2, 2)
  363. expr1 = exp(A)*exp(B)
  364. expr2 = exp(B)*exp(A)
  365. assert expr1 != expr2
  366. assert expr1 - expr2 != 0
  367. assert not isinstance(expr1, exp)
  368. assert not isinstance(expr2, exp)
  369. def test_invalid_args():
  370. raises(SympifyError, lambda: MatrixSymbol(1, 2, 'A'))
  371. def test_matrixsymbol_from_symbol():
  372. # The label should be preserved during doit and subs
  373. A_label = Symbol('A', complex=True)
  374. A = MatrixSymbol(A_label, 2, 2)
  375. A_1 = A.doit()
  376. A_2 = A.subs(2, 3)
  377. assert A_1.args == A.args
  378. assert A_2.args[0] == A.args[0]
  379. def test_as_explicit():
  380. Z = MatrixSymbol('Z', 2, 3)
  381. assert Z.as_explicit() == ImmutableMatrix([
  382. [Z[0, 0], Z[0, 1], Z[0, 2]],
  383. [Z[1, 0], Z[1, 1], Z[1, 2]],
  384. ])
  385. raises(ValueError, lambda: A.as_explicit())
  386. def test_MatrixSet():
  387. M = MatrixSet(2, 2, set=S.Reals)
  388. assert M.shape == (2, 2)
  389. assert M.set == S.Reals
  390. X = Matrix([[1, 2], [3, 4]])
  391. assert X in M
  392. X = ZeroMatrix(2, 2)
  393. assert X in M
  394. raises(TypeError, lambda: A in M)
  395. raises(TypeError, lambda: 1 in M)
  396. M = MatrixSet(n, m, set=S.Reals)
  397. assert A in M
  398. raises(TypeError, lambda: C in M)
  399. raises(TypeError, lambda: X in M)
  400. M = MatrixSet(2, 2, set={1, 2, 3})
  401. X = Matrix([[1, 2], [3, 4]])
  402. Y = Matrix([[1, 2]])
  403. assert (X in M) == S.false
  404. assert (Y in M) == S.false
  405. raises(ValueError, lambda: MatrixSet(2, -2, S.Reals))
  406. raises(ValueError, lambda: MatrixSet(2.4, -1, S.Reals))
  407. raises(TypeError, lambda: MatrixSet(2, 2, (1, 2, 3)))
  408. def test_matrixsymbol_solving():
  409. A = MatrixSymbol('A', 2, 2)
  410. B = MatrixSymbol('B', 2, 2)
  411. Z = ZeroMatrix(2, 2)
  412. assert -(-A + B) - A + B == Z
  413. assert (-(-A + B) - A + B).simplify() == Z
  414. assert (-(-A + B) - A + B).expand() == Z
  415. assert (-(-A + B) - A + B - Z).simplify() == Z
  416. assert (-(-A + B) - A + B - Z).expand() == Z