|
|
from sympy.core.basic import Basic from sympy.functions import adjoint, conjugate
from sympy.matrices.expressions.matexpr import MatrixExpr
class Transpose(MatrixExpr): """
The transpose of a matrix expression.
This is a symbolic object that simply stores its argument without evaluating it. To actually compute the transpose, use the ``transpose()`` function, or the ``.T`` attribute of matrices.
Examples ========
>>> from sympy import MatrixSymbol, Transpose, transpose >>> A = MatrixSymbol('A', 3, 5) >>> B = MatrixSymbol('B', 5, 3) >>> Transpose(A) A.T >>> A.T == transpose(A) == Transpose(A) True >>> Transpose(A*B) (A*B).T >>> transpose(A*B) B.T*A.T
"""
is_Transpose = True
def doit(self, **hints): arg = self.arg if hints.get('deep', True) and isinstance(arg, Basic): arg = arg.doit(**hints) _eval_transpose = getattr(arg, '_eval_transpose', None) if _eval_transpose is not None: result = _eval_transpose() return result if result is not None else Transpose(arg) else: return Transpose(arg)
@property def arg(self): return self.args[0]
@property def shape(self): return self.arg.shape[::-1]
def _entry(self, i, j, expand=False, **kwargs): return self.arg._entry(j, i, expand=expand, **kwargs)
def _eval_adjoint(self): return conjugate(self.arg)
def _eval_conjugate(self): return adjoint(self.arg)
def _eval_transpose(self): return self.arg
def _eval_trace(self): from .trace import Trace return Trace(self.arg) # Trace(X.T) => Trace(X)
def _eval_determinant(self): from sympy.matrices.expressions.determinant import det return det(self.arg)
def _eval_derivative(self, x): # x is a scalar: return self.arg._eval_derivative(x)
def _eval_derivative_matrix_lines(self, x): lines = self.args[0]._eval_derivative_matrix_lines(x) return [i.transpose() for i in lines]
def transpose(expr): """Matrix transpose""" return Transpose(expr).doit(deep=False)
from sympy.assumptions.ask import ask, Q from sympy.assumptions.refine import handlers_dict
def refine_Transpose(expr, assumptions): """
>>> from sympy import MatrixSymbol, Q, assuming, refine >>> X = MatrixSymbol('X', 2, 2) >>> X.T X.T >>> with assuming(Q.symmetric(X)): ... print(refine(X.T)) X """
if ask(Q.symmetric(expr), assumptions): return expr.arg
return expr
handlers_dict['Transpose'] = refine_Transpose
|