m2m模型翻译
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

87 lines
4.0 KiB

6 months ago
  1. from typing import Dict as tDict, Tuple as tTuple
  2. from sympy.ntheory import qs
  3. from sympy.ntheory.qs import SievePolynomial, \
  4. _generate_factor_base, _initialize_first_polynomial, _initialize_ith_poly, \
  5. _gen_sieve_array, _check_smoothness, _trial_division_stage, _gauss_mod_2, \
  6. _build_matrix, _find_factor
  7. assert qs(10009202107, 100, 10000) == {100043, 100049}
  8. assert qs(211107295182713951054568361, 1000, 10000) == {13791315212531, 15307263442931}
  9. assert qs(980835832582657*990377764891511, 3000, 50000) == {980835832582657, 990377764891511}
  10. assert qs(18640889198609*20991129234731, 1000, 50000) == {18640889198609, 20991129234731}
  11. n = 10009202107
  12. M = 50
  13. #a = 10, b = 15, modified_coeff = [a**2, 2*a*b, b**2 - N]
  14. sieve_poly = SievePolynomial([100, 1600, -10009195707], 10, 80)
  15. assert sieve_poly.eval(10) == -10009169707
  16. assert sieve_poly.eval(5) == -10009185207
  17. idx_1000, idx_5000, factor_base = _generate_factor_base(2000, n)
  18. assert idx_1000 == 82
  19. assert [factor_base[i].prime for i in range(15)] == [2, 3, 7, 11, 17, 19, 29, 31,\
  20. 43, 59, 61, 67, 71, 73, 79]
  21. assert [factor_base[i].tmem_p for i in range(15)] == [1, 1, 3, 5, 3, 6, 6, 14, 1,\
  22. 16, 24, 22, 18, 22, 15]
  23. assert [factor_base[i].log_p for i in range(5)] == [710, 1125, 1993, 2455, 2901]
  24. g, B = _initialize_first_polynomial(n, M, factor_base, idx_1000, idx_5000, seed=0)
  25. assert g.a == 1133107
  26. assert g.b == 682543
  27. assert B == [272889, 409654]
  28. assert [factor_base[i].soln1 for i in range(15)] == [0, 0, 3, 7, 13, 0, 8, 19,\
  29. 9, 43, 27, 25, 63, 29, 19]
  30. assert [factor_base[i].soln2 for i in range(15)] == [0, 1, 1, 3, 12, 16, 15, 6,\
  31. 15, 1, 56, 55, 61, 58, 16]
  32. assert [factor_base[i].a_inv for i in range(15)] == [1, 1, 5, 7, 3, 5, 26, 6,\
  33. 40, 5, 21, 45, 4, 1, 8]
  34. assert [factor_base[i].b_ainv for i in range(5)] == [[0, 0], [0, 2], [3, 0],\
  35. [3, 9], [13, 13]]
  36. g_1 = _initialize_ith_poly(n, factor_base, 1, g, B)
  37. assert g_1.a == 1133107
  38. assert g_1.b == 136765
  39. sieve_array = _gen_sieve_array(M, factor_base)
  40. assert sieve_array[0:5] == [8424, 13603, 1835, 5335, 710]
  41. assert _check_smoothness(9645, factor_base) == (5, False)
  42. assert _check_smoothness(210313, factor_base)[0][0:15] == [0, 0, 0, 0, 0, 0, 0,\
  43. 0, 0, 1, 0, 0, 1, 0, 1]
  44. assert _check_smoothness(210313, factor_base)[1] == True
  45. partial_relations = {} # type: tDict[int, tTuple[int, int]]
  46. smooth_relation, partial_relation = _trial_division_stage(n, M, factor_base,\
  47. sieve_array, sieve_poly,\
  48. partial_relations, ERROR_TERM=25*2**10)
  49. assert partial_relations == {8699: (440, -10009008507),
  50. 166741: (490, -10008962007),
  51. 131449: (530, -10008921207),
  52. 6653: (550, -10008899607)}
  53. assert [smooth_relation[i][0] for i in range(5)] == [-250, -670615476700,\
  54. -45211565844500, -231723037747200, -1811665537200]
  55. assert [smooth_relation[i][1] for i in range(5)] == [-10009139607, 1133094251961,\
  56. 5302606761, 53804049849, 1950723889]
  57. assert smooth_relation[0][2][0:15] == [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
  58. assert _gauss_mod_2([[0, 0, 1], [1, 0, 1], [0, 1, 0], [0, 1, 1], [0, 1, 1]]) ==\
  59. ([[[0, 1, 1], 3], [[0, 1, 1], 4]], [True, True, True, False, False], [[0, 0, 1],\
  60. [1, 0, 0], [0, 1, 0], [0, 1, 1], [0, 1, 1]])
  61. N=1817
  62. smooth_relations = [(2455024, 637, [0, 0, 0, 1]),
  63. (-27993000, 81536, [0, 1, 0, 1]),
  64. (11461840, 12544, [0, 0, 0, 0]),
  65. (149, 20384, [0, 1, 0, 1]),
  66. (-31138074, 19208, [0, 1, 0, 0])]
  67. matrix = _build_matrix(smooth_relations)
  68. assert matrix == [[0, 0, 0, 1], [0, 1, 0, 1], [0, 0, 0, 0], [0, 1, 0, 1], [0, 1, 0, 0]]
  69. dependent_row, mark, gauss_matrix = _gauss_mod_2(matrix)
  70. assert dependent_row == [[[0, 0, 0, 0], 2], [[0, 1, 0, 0], 3]]
  71. assert mark == [True, True, False, False, True]
  72. assert gauss_matrix == [[0, 0, 0, 1], [0, 1, 0, 0], [0, 0, 0, 0], [0, 1, 0, 0], [0, 1, 0, 1]]
  73. factor = _find_factor(dependent_row, mark, gauss_matrix, 0, smooth_relations, N)
  74. assert factor == 23