|
|
"""Benchmarks for polynomials over Galois fields. """
from sympy.polys.galoistools import gf_from_dict, gf_factor_sqf from sympy.polys.domains import ZZ from sympy.core.numbers import pi from sympy.ntheory.generate import nextprime
def gathen_poly(n, p, K): return gf_from_dict({n: K.one, 1: K.one, 0: K.one}, p, K)
def shoup_poly(n, p, K): f = [K.one] * (n + 1) for i in range(1, n + 1): f[i] = (f[i - 1]**2 + K.one) % p return f
def genprime(n, K): return K(nextprime(int((2**n * pi).evalf())))
p_10 = genprime(10, ZZ) f_10 = gathen_poly(10, p_10, ZZ)
p_20 = genprime(20, ZZ) f_20 = gathen_poly(20, p_20, ZZ)
def timeit_gathen_poly_f10_zassenhaus(): gf_factor_sqf(f_10, p_10, ZZ, method='zassenhaus')
def timeit_gathen_poly_f10_shoup(): gf_factor_sqf(f_10, p_10, ZZ, method='shoup')
def timeit_gathen_poly_f20_zassenhaus(): gf_factor_sqf(f_20, p_20, ZZ, method='zassenhaus')
def timeit_gathen_poly_f20_shoup(): gf_factor_sqf(f_20, p_20, ZZ, method='shoup')
P_08 = genprime(8, ZZ) F_10 = shoup_poly(10, P_08, ZZ)
P_18 = genprime(18, ZZ) F_20 = shoup_poly(20, P_18, ZZ)
def timeit_shoup_poly_F10_zassenhaus(): gf_factor_sqf(F_10, P_08, ZZ, method='zassenhaus')
def timeit_shoup_poly_F10_shoup(): gf_factor_sqf(F_10, P_08, ZZ, method='shoup')
def timeit_shoup_poly_F20_zassenhaus(): gf_factor_sqf(F_20, P_18, ZZ, method='zassenhaus')
def timeit_shoup_poly_F20_shoup(): gf_factor_sqf(F_20, P_18, ZZ, method='shoup')
|