|
|
"""Implementation of :class:`ComplexField` class. """
from sympy.core.numbers import Float, I from sympy.polys.domains.characteristiczero import CharacteristicZero from sympy.polys.domains.field import Field from sympy.polys.domains.mpelements import MPContext from sympy.polys.domains.simpledomain import SimpleDomain from sympy.polys.polyerrors import DomainError, CoercionFailed from sympy.utilities import public
@public class ComplexField(Field, CharacteristicZero, SimpleDomain): """Complex numbers up to the given precision. """
rep = 'CC'
is_ComplexField = is_CC = True
is_Exact = False is_Numerical = True
has_assoc_Ring = False has_assoc_Field = True
_default_precision = 53
@property def has_default_precision(self): return self.precision == self._default_precision
@property def precision(self): return self._context.prec
@property def dps(self): return self._context.dps
@property def tolerance(self): return self._context.tolerance
def __init__(self, prec=_default_precision, dps=None, tol=None): context = MPContext(prec, dps, tol, False) context._parent = self self._context = context
self.dtype = context.mpc self.zero = self.dtype(0) self.one = self.dtype(1)
def __eq__(self, other): return (isinstance(other, ComplexField) and self.precision == other.precision and self.tolerance == other.tolerance)
def __hash__(self): return hash((self.__class__.__name__, self.dtype, self.precision, self.tolerance))
def to_sympy(self, element): """Convert ``element`` to SymPy number. """ return Float(element.real, self.dps) + I*Float(element.imag, self.dps)
def from_sympy(self, expr): """Convert SymPy's number to ``dtype``. """ number = expr.evalf(n=self.dps) real, imag = number.as_real_imag()
if real.is_Number and imag.is_Number: return self.dtype(real, imag) else: raise CoercionFailed("expected complex number, got %s" % expr)
def from_ZZ(self, element, base): return self.dtype(element)
def from_QQ(self, element, base): return self.dtype(int(element.numerator)) / int(element.denominator)
def from_ZZ_python(self, element, base): return self.dtype(element)
def from_QQ_python(self, element, base): return self.dtype(element.numerator) / element.denominator
def from_ZZ_gmpy(self, element, base): return self.dtype(int(element))
def from_QQ_gmpy(self, element, base): return self.dtype(int(element.numerator)) / int(element.denominator)
def from_GaussianIntegerRing(self, element, base): return self.dtype(int(element.x), int(element.y))
def from_GaussianRationalField(self, element, base): x = element.x y = element.y return (self.dtype(int(x.numerator)) / int(x.denominator) + self.dtype(0, int(y.numerator)) / int(y.denominator))
def from_AlgebraicField(self, element, base): return self.from_sympy(base.to_sympy(element).evalf(self.dps))
def from_RealField(self, element, base): return self.dtype(element)
def from_ComplexField(self, element, base): if self == base: return element else: return self.dtype(element)
def get_ring(self): """Returns a ring associated with ``self``. """ raise DomainError("there is no ring associated with %s" % self)
def get_exact(self): """Returns an exact domain associated with ``self``. """ raise DomainError("there is no exact domain associated with %s" % self)
def is_negative(self, element): """Returns ``False`` for any ``ComplexElement``. """ return False
def is_positive(self, element): """Returns ``False`` for any ``ComplexElement``. """ return False
def is_nonnegative(self, element): """Returns ``False`` for any ``ComplexElement``. """ return False
def is_nonpositive(self, element): """Returns ``False`` for any ``ComplexElement``. """ return False
def gcd(self, a, b): """Returns GCD of ``a`` and ``b``. """ return self.one
def lcm(self, a, b): """Returns LCM of ``a`` and ``b``. """ return a*b
def almosteq(self, a, b, tolerance=None): """Check if ``a`` and ``b`` are almost equal. """ return self._context.almosteq(a, b, tolerance)
CC = ComplexField()
|