|
|
"""Implementation of :class:`Field` class. """
from sympy.polys.domains.ring import Ring from sympy.polys.polyerrors import NotReversible, DomainError from sympy.utilities import public
@public class Field(Ring): """Represents a field domain. """
is_Field = True is_PID = True
def get_ring(self): """Returns a ring associated with ``self``. """ raise DomainError('there is no ring associated with %s' % self)
def get_field(self): """Returns a field associated with ``self``. """ return self
def exquo(self, a, b): """Exact quotient of ``a`` and ``b``, implies ``__truediv__``. """ return a / b
def quo(self, a, b): """Quotient of ``a`` and ``b``, implies ``__truediv__``. """ return a / b
def rem(self, a, b): """Remainder of ``a`` and ``b``, implies nothing. """ return self.zero
def div(self, a, b): """Division of ``a`` and ``b``, implies ``__truediv__``. """ return a / b, self.zero
def gcd(self, a, b): """
Returns GCD of ``a`` and ``b``.
This definition of GCD over fields allows to clear denominators in `primitive()`.
Examples ========
>>> from sympy.polys.domains import QQ >>> from sympy import S, gcd, primitive >>> from sympy.abc import x
>>> QQ.gcd(QQ(2, 3), QQ(4, 9)) 2/9 >>> gcd(S(2)/3, S(4)/9) 2/9 >>> primitive(2*x/3 + S(4)/9) (2/9, 3*x + 2)
"""
try: ring = self.get_ring() except DomainError: return self.one
p = ring.gcd(self.numer(a), self.numer(b)) q = ring.lcm(self.denom(a), self.denom(b))
return self.convert(p, ring)/q
def lcm(self, a, b): """
Returns LCM of ``a`` and ``b``.
>>> from sympy.polys.domains import QQ >>> from sympy import S, lcm
>>> QQ.lcm(QQ(2, 3), QQ(4, 9)) 4/3 >>> lcm(S(2)/3, S(4)/9) 4/3
"""
try: ring = self.get_ring() except DomainError: return a*b
p = ring.lcm(self.numer(a), self.numer(b)) q = ring.gcd(self.denom(a), self.denom(b))
return self.convert(p, ring)/q
def revert(self, a): """Returns ``a**(-1)`` if possible. """ if a: return 1/a else: raise NotReversible('zero is not reversible')
def is_unit(self, a): """Return true if ``a`` is a invertible""" return bool(a)
|