|
|
"""Implementation of :class:`IntegerRing` class. """
from sympy.external.gmpy import MPZ, HAS_GMPY
from sympy.polys.domains.groundtypes import ( SymPyInteger, factorial, gcdex, gcd, lcm, sqrt, )
from sympy.polys.domains.characteristiczero import CharacteristicZero from sympy.polys.domains.ring import Ring from sympy.polys.domains.simpledomain import SimpleDomain from sympy.polys.polyerrors import CoercionFailed from sympy.utilities import public
import math
@public class IntegerRing(Ring, CharacteristicZero, SimpleDomain): r"""The domain ``ZZ`` representing the integers `\mathbb{Z}`.
The :py:class:`IntegerRing` class represents the ring of integers as a :py:class:`~.Domain` in the domain system. :py:class:`IntegerRing` is a super class of :py:class:`PythonIntegerRing` and :py:class:`GMPYIntegerRing` one of which will be the implementation for :ref:`ZZ` depending on whether or not ``gmpy`` or ``gmpy2`` is installed.
See also ========
Domain """
rep = 'ZZ' alias = 'ZZ' dtype = MPZ zero = dtype(0) one = dtype(1) tp = type(one)
is_IntegerRing = is_ZZ = True is_Numerical = True is_PID = True
has_assoc_Ring = True has_assoc_Field = True
def __init__(self): """Allow instantiation of this domain. """
def to_sympy(self, a): """Convert ``a`` to a SymPy object. """ return SymPyInteger(int(a))
def from_sympy(self, a): """Convert SymPy's Integer to ``dtype``. """ if a.is_Integer: return MPZ(a.p) elif a.is_Float and int(a) == a: return MPZ(int(a)) else: raise CoercionFailed("expected an integer, got %s" % a)
def get_field(self): r"""Return the associated field of fractions :ref:`QQ`
Returns =======
:ref:`QQ`: The associated field of fractions :ref:`QQ`, a :py:class:`~.Domain` representing the rational numbers `\mathbb{Q}`.
Examples ========
>>> from sympy import ZZ >>> ZZ.get_field() QQ """
from sympy.polys.domains import QQ return QQ
def algebraic_field(self, *extension): r"""Returns an algebraic field, i.e. `\mathbb{Q}(\alpha, \ldots)`.
Parameters ==========
*extension: One or more Expr. Generators of the extension. These should be expressions that are algebraic over `\mathbb{Q}`.
Returns =======
:py:class:`~.AlgebraicField` A :py:class:`~.Domain` representing the algebraic field extension.
Examples ========
>>> from sympy import ZZ, sqrt >>> ZZ.algebraic_field(sqrt(2)) QQ<sqrt(2)> """
return self.get_field().algebraic_field(*extension)
def from_AlgebraicField(K1, a, K0): """Convert a :py:class:`~.ANP` object to :ref:`ZZ`.
See :py:meth:`~.Domain.convert`. """
if a.is_ground: return K1.convert(a.LC(), K0.dom)
def log(self, a, b): r"""logarithm of *a* to the base *b*
Parameters ==========
a: number b: number
Returns =======
$\\lfloor\log(a, b)\\rfloor$: Floor of the logarithm of *a* to the base *b*
Examples ========
>>> from sympy import ZZ >>> ZZ.log(ZZ(8), ZZ(2)) 3 >>> ZZ.log(ZZ(9), ZZ(2)) 3
Notes =====
This function uses ``math.log`` which is based on ``float`` so it will fail for large integer arguments. """
return self.dtype(math.log(int(a), b))
def from_FF(K1, a, K0): """Convert ``ModularInteger(int)`` to GMPY's ``mpz``. """ return MPZ(a.to_int())
def from_FF_python(K1, a, K0): """Convert ``ModularInteger(int)`` to GMPY's ``mpz``. """ return MPZ(a.to_int())
def from_ZZ(K1, a, K0): """Convert Python's ``int`` to GMPY's ``mpz``. """ return MPZ(a)
def from_ZZ_python(K1, a, K0): """Convert Python's ``int`` to GMPY's ``mpz``. """ return MPZ(a)
def from_QQ(K1, a, K0): """Convert Python's ``Fraction`` to GMPY's ``mpz``. """ if a.denominator == 1: return MPZ(a.numerator)
def from_QQ_python(K1, a, K0): """Convert Python's ``Fraction`` to GMPY's ``mpz``. """ if a.denominator == 1: return MPZ(a.numerator)
def from_FF_gmpy(K1, a, K0): """Convert ``ModularInteger(mpz)`` to GMPY's ``mpz``. """ return a.to_int()
def from_ZZ_gmpy(K1, a, K0): """Convert GMPY's ``mpz`` to GMPY's ``mpz``. """ return a
def from_QQ_gmpy(K1, a, K0): """Convert GMPY ``mpq`` to GMPY's ``mpz``. """ if a.denominator == 1: return a.numerator
def from_RealField(K1, a, K0): """Convert mpmath's ``mpf`` to GMPY's ``mpz``. """ p, q = K0.to_rational(a)
if q == 1: return MPZ(p)
def from_GaussianIntegerRing(K1, a, K0): if a.y == 0: return a.x
def gcdex(self, a, b): """Compute extended GCD of ``a`` and ``b``. """ h, s, t = gcdex(a, b) if HAS_GMPY: return s, t, h else: return h, s, t
def gcd(self, a, b): """Compute GCD of ``a`` and ``b``. """ return gcd(a, b)
def lcm(self, a, b): """Compute LCM of ``a`` and ``b``. """ return lcm(a, b)
def sqrt(self, a): """Compute square root of ``a``. """ return sqrt(a)
def factorial(self, a): """Compute factorial of ``a``. """ return factorial(a)
ZZ = IntegerRing()
|