|
|
"""Implementation of :class:`PolynomialRing` class. """
from sympy.polys.domains.ring import Ring from sympy.polys.domains.compositedomain import CompositeDomain
from sympy.polys.polyerrors import CoercionFailed, GeneratorsError from sympy.utilities import public
@public class PolynomialRing(Ring, CompositeDomain): """A class for representing multivariate polynomial rings. """
is_PolynomialRing = is_Poly = True
has_assoc_Ring = True has_assoc_Field = True
def __init__(self, domain_or_ring, symbols=None, order=None): from sympy.polys.rings import PolyRing
if isinstance(domain_or_ring, PolyRing) and symbols is None and order is None: ring = domain_or_ring else: ring = PolyRing(symbols, domain_or_ring, order)
self.ring = ring self.dtype = ring.dtype
self.gens = ring.gens self.ngens = ring.ngens self.symbols = ring.symbols self.domain = ring.domain
if symbols: if ring.domain.is_Field and ring.domain.is_Exact and len(symbols)==1: self.is_PID = True
# TODO: remove this self.dom = self.domain
def new(self, element): return self.ring.ring_new(element)
@property def zero(self): return self.ring.zero
@property def one(self): return self.ring.one
@property def order(self): return self.ring.order
def __str__(self): return str(self.domain) + '[' + ','.join(map(str, self.symbols)) + ']'
def __hash__(self): return hash((self.__class__.__name__, self.dtype.ring, self.domain, self.symbols))
def __eq__(self, other): """Returns `True` if two domains are equivalent. """ return isinstance(other, PolynomialRing) and \ (self.dtype.ring, self.domain, self.symbols) == \ (other.dtype.ring, other.domain, other.symbols)
def is_unit(self, a): """Returns ``True`` if ``a`` is a unit of ``self``""" if not a.is_ground: return False K = self.domain return K.is_unit(K.convert_from(a, self))
def canonical_unit(self, a): u = self.domain.canonical_unit(a.LC) return self.ring.ground_new(u)
def to_sympy(self, a): """Convert `a` to a SymPy object. """ return a.as_expr()
def from_sympy(self, a): """Convert SymPy's expression to `dtype`. """ return self.ring.from_expr(a)
def from_ZZ(K1, a, K0): """Convert a Python `int` object to `dtype`. """ return K1(K1.domain.convert(a, K0))
def from_ZZ_python(K1, a, K0): """Convert a Python `int` object to `dtype`. """ return K1(K1.domain.convert(a, K0))
def from_QQ(K1, a, K0): """Convert a Python `Fraction` object to `dtype`. """ return K1(K1.domain.convert(a, K0))
def from_QQ_python(K1, a, K0): """Convert a Python `Fraction` object to `dtype`. """ return K1(K1.domain.convert(a, K0))
def from_ZZ_gmpy(K1, a, K0): """Convert a GMPY `mpz` object to `dtype`. """ return K1(K1.domain.convert(a, K0))
def from_QQ_gmpy(K1, a, K0): """Convert a GMPY `mpq` object to `dtype`. """ return K1(K1.domain.convert(a, K0))
def from_GaussianIntegerRing(K1, a, K0): """Convert a `GaussianInteger` object to `dtype`. """ return K1(K1.domain.convert(a, K0))
def from_GaussianRationalField(K1, a, K0): """Convert a `GaussianRational` object to `dtype`. """ return K1(K1.domain.convert(a, K0))
def from_RealField(K1, a, K0): """Convert a mpmath `mpf` object to `dtype`. """ return K1(K1.domain.convert(a, K0))
def from_ComplexField(K1, a, K0): """Convert a mpmath `mpf` object to `dtype`. """ return K1(K1.domain.convert(a, K0))
def from_AlgebraicField(K1, a, K0): """Convert an algebraic number to ``dtype``. """ if K1.domain != K0: a = K1.domain.convert_from(a, K0) if a is not None: return K1.new(a)
def from_PolynomialRing(K1, a, K0): """Convert a polynomial to ``dtype``. """ try: return a.set_ring(K1.ring) except (CoercionFailed, GeneratorsError): return None
def from_FractionField(K1, a, K0): """Convert a rational function to ``dtype``. """ if K1.domain == K0: return K1.ring.from_list([a])
q, r = K0.numer(a).div(K0.denom(a))
if r.is_zero: return K1.from_PolynomialRing(q, K0.field.ring.to_domain()) else: return None
def from_GlobalPolynomialRing(K1, a, K0): """Convert from old poly ring to ``dtype``. """ if K1.symbols == K0.gens: ad = a.to_dict() if K1.domain != K0.domain: ad = {m: K1.domain.convert(c) for m, c in ad.items()} return K1(ad) elif a.is_ground and K0.domain == K1: return K1.convert_from(a.to_list()[0], K0.domain)
def get_field(self): """Returns a field associated with `self`. """ return self.ring.to_field().to_domain()
def is_positive(self, a): """Returns True if `LC(a)` is positive. """ return self.domain.is_positive(a.LC)
def is_negative(self, a): """Returns True if `LC(a)` is negative. """ return self.domain.is_negative(a.LC)
def is_nonpositive(self, a): """Returns True if `LC(a)` is non-positive. """ return self.domain.is_nonpositive(a.LC)
def is_nonnegative(self, a): """Returns True if `LC(a)` is non-negative. """ return self.domain.is_nonnegative(a.LC)
def gcdex(self, a, b): """Extended GCD of `a` and `b`. """ return a.gcdex(b)
def gcd(self, a, b): """Returns GCD of `a` and `b`. """ return a.gcd(b)
def lcm(self, a, b): """Returns LCM of `a` and `b`. """ return a.lcm(b)
def factorial(self, a): """Returns factorial of `a`. """ return self.dtype(self.domain.factorial(a))
|