|
|
"""Implementation of :class:`QuotientRing` class."""
from sympy.polys.agca.modules import FreeModuleQuotientRing from sympy.polys.domains.ring import Ring from sympy.polys.polyerrors import NotReversible, CoercionFailed from sympy.utilities import public
# TODO # - successive quotients (when quotient ideals are implemented) # - poly rings over quotients? # - division by non-units in integral domains?
@public class QuotientRingElement: """
Class representing elements of (commutative) quotient rings.
Attributes:
- ring - containing ring - data - element of ring.ring (i.e. base ring) representing self """
def __init__(self, ring, data): self.ring = ring self.data = data
def __str__(self): from sympy.printing.str import sstr return sstr(self.data) + " + " + str(self.ring.base_ideal)
__repr__ = __str__
def __bool__(self): return not self.ring.is_zero(self)
def __add__(self, om): if not isinstance(om, self.__class__) or om.ring != self.ring: try: om = self.ring.convert(om) except (NotImplementedError, CoercionFailed): return NotImplemented return self.ring(self.data + om.data)
__radd__ = __add__
def __neg__(self): return self.ring(self.data*self.ring.ring.convert(-1))
def __sub__(self, om): return self.__add__(-om)
def __rsub__(self, om): return (-self).__add__(om)
def __mul__(self, o): if not isinstance(o, self.__class__): try: o = self.ring.convert(o) except (NotImplementedError, CoercionFailed): return NotImplemented return self.ring(self.data*o.data)
__rmul__ = __mul__
def __rtruediv__(self, o): return self.ring.revert(self)*o
def __truediv__(self, o): if not isinstance(o, self.__class__): try: o = self.ring.convert(o) except (NotImplementedError, CoercionFailed): return NotImplemented return self.ring.revert(o)*self
def __pow__(self, oth): if oth < 0: return self.ring.revert(self) ** -oth return self.ring(self.data ** oth)
def __eq__(self, om): if not isinstance(om, self.__class__) or om.ring != self.ring: return False return self.ring.is_zero(self - om)
def __ne__(self, om): return not self == om
class QuotientRing(Ring): """
Class representing (commutative) quotient rings.
You should not usually instantiate this by hand, instead use the constructor from the base ring in the construction.
>>> from sympy.abc import x >>> from sympy import QQ >>> I = QQ.old_poly_ring(x).ideal(x**3 + 1) >>> QQ.old_poly_ring(x).quotient_ring(I) QQ[x]/<x**3 + 1>
Shorter versions are possible:
>>> QQ.old_poly_ring(x)/I QQ[x]/<x**3 + 1>
>>> QQ.old_poly_ring(x)/[x**3 + 1] QQ[x]/<x**3 + 1>
Attributes:
- ring - the base ring - base_ideal - the ideal used to form the quotient """
has_assoc_Ring = True has_assoc_Field = False dtype = QuotientRingElement
def __init__(self, ring, ideal): if not ideal.ring == ring: raise ValueError('Ideal must belong to %s, got %s' % (ring, ideal)) self.ring = ring self.base_ideal = ideal self.zero = self(self.ring.zero) self.one = self(self.ring.one)
def __str__(self): return str(self.ring) + "/" + str(self.base_ideal)
def __hash__(self): return hash((self.__class__.__name__, self.dtype, self.ring, self.base_ideal))
def new(self, a): """Construct an element of ``self`` domain from ``a``. """ if not isinstance(a, self.ring.dtype): a = self.ring(a) # TODO optionally disable reduction? return self.dtype(self, self.base_ideal.reduce_element(a))
def __eq__(self, other): """Returns ``True`` if two domains are equivalent. """ return isinstance(other, QuotientRing) and \ self.ring == other.ring and self.base_ideal == other.base_ideal
def from_ZZ(K1, a, K0): """Convert a Python ``int`` object to ``dtype``. """ return K1(K1.ring.convert(a, K0))
from_ZZ_python = from_ZZ from_QQ_python = from_ZZ_python from_ZZ_gmpy = from_ZZ_python from_QQ_gmpy = from_ZZ_python from_RealField = from_ZZ_python from_GlobalPolynomialRing = from_ZZ_python from_FractionField = from_ZZ_python
def from_sympy(self, a): return self(self.ring.from_sympy(a))
def to_sympy(self, a): return self.ring.to_sympy(a.data)
def from_QuotientRing(self, a, K0): if K0 == self: return a
def poly_ring(self, *gens): """Returns a polynomial ring, i.e. ``K[X]``. """ raise NotImplementedError('nested domains not allowed')
def frac_field(self, *gens): """Returns a fraction field, i.e. ``K(X)``. """ raise NotImplementedError('nested domains not allowed')
def revert(self, a): """
Compute a**(-1), if possible. """
I = self.ring.ideal(a.data) + self.base_ideal try: return self(I.in_terms_of_generators(1)[0]) except ValueError: # 1 not in I raise NotReversible('%s not a unit in %r' % (a, self))
def is_zero(self, a): return self.base_ideal.contains(a.data)
def free_module(self, rank): """
Generate a free module of rank ``rank`` over ``self``.
>>> from sympy.abc import x >>> from sympy import QQ >>> (QQ.old_poly_ring(x)/[x**2 + 1]).free_module(2) (QQ[x]/<x**2 + 1>)**2 """
return FreeModuleQuotientRing(self, rank)
|