|
|
"""
Module for the DomainMatrix class.
A DomainMatrix represents a matrix with elements that are in a particular Domain. Each DomainMatrix internally wraps a DDM which is used for the lower-level operations. The idea is that the DomainMatrix class provides the convenience routines for converting between Expr and the poly domains as well as unifying matrices with different domains.
"""
from functools import reduce from typing import Union as tUnion, Tuple as tTuple
from sympy.core.sympify import _sympify
from ..domains import Domain
from ..constructor import construct_domain
from .exceptions import (DMNonSquareMatrixError, DMShapeError, DMDomainError, DMFormatError, DMBadInputError, DMNotAField)
from .ddm import DDM
from .sdm import SDM
from .domainscalar import DomainScalar
from sympy.polys.domains import ZZ, EXRAW
def DM(rows, domain): """Convenient alias for DomainMatrix.from_list
Examples =======
>>> from sympy import ZZ >>> from sympy.polys.matrices import DM >>> DM([[1, 2], [3, 4]], ZZ) DomainMatrix([[1, 2], [3, 4]], (2, 2), ZZ)
See also =======
DomainMatrix.from_list """
return DomainMatrix.from_list(rows, domain)
class DomainMatrix: r"""
Associate Matrix with :py:class:`~.Domain`
Explanation ===========
DomainMatrix uses :py:class:`~.Domain` for its internal representation which makes it more faster for many common operations than current SymPy Matrix class, but this advantage makes it not entirely compatible with Matrix. DomainMatrix could be found analogous to numpy arrays with "dtype". In the DomainMatrix, each matrix has a domain such as :ref:`ZZ` or :ref:`QQ(a)`.
Examples ========
Creating a DomainMatrix from the existing Matrix class:
>>> from sympy import Matrix >>> from sympy.polys.matrices import DomainMatrix >>> Matrix1 = Matrix([ ... [1, 2], ... [3, 4]]) >>> A = DomainMatrix.from_Matrix(Matrix1) >>> A DomainMatrix({0: {0: 1, 1: 2}, 1: {0: 3, 1: 4}}, (2, 2), ZZ)
Driectly forming a DomainMatrix:
>>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [ZZ(1), ZZ(2)], ... [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> A DomainMatrix([[1, 2], [3, 4]], (2, 2), ZZ)
See Also ========
DDM SDM Domain Poly
"""
rep: tUnion[SDM, DDM] shape: tTuple[int, int] domain: Domain
def __new__(cls, rows, shape, domain, *, fmt=None): """
Creates a :py:class:`~.DomainMatrix`.
Parameters ==========
rows : Represents elements of DomainMatrix as list of lists shape : Represents dimension of DomainMatrix domain : Represents :py:class:`~.Domain` of DomainMatrix
Raises ======
TypeError If any of rows, shape and domain are not provided
"""
if isinstance(rows, (DDM, SDM)): raise TypeError("Use from_rep to initialise from SDM/DDM") elif isinstance(rows, list): rep = DDM(rows, shape, domain) elif isinstance(rows, dict): rep = SDM(rows, shape, domain) else: msg = "Input should be list-of-lists or dict-of-dicts" raise TypeError(msg)
if fmt is not None: if fmt == 'sparse': rep = rep.to_sdm() elif fmt == 'dense': rep = rep.to_ddm() else: raise ValueError("fmt should be 'sparse' or 'dense'")
return cls.from_rep(rep)
def __getnewargs__(self): rep = self.rep if isinstance(rep, DDM): arg = list(rep) elif isinstance(rep, SDM): arg = dict(rep) else: raise RuntimeError # pragma: no cover return arg, self.shape, self.domain
def __getitem__(self, key): i, j = key m, n = self.shape if not (isinstance(i, slice) or isinstance(j, slice)): return DomainScalar(self.rep.getitem(i, j), self.domain)
if not isinstance(i, slice): if not -m <= i < m: raise IndexError("Row index out of range") i = i % m i = slice(i, i+1) if not isinstance(j, slice): if not -n <= j < n: raise IndexError("Column index out of range") j = j % n j = slice(j, j+1)
return self.from_rep(self.rep.extract_slice(i, j))
def getitem_sympy(self, i, j): return self.domain.to_sympy(self.rep.getitem(i, j))
def extract(self, rowslist, colslist): return self.from_rep(self.rep.extract(rowslist, colslist))
def __setitem__(self, key, value): i, j = key if not self.domain.of_type(value): raise TypeError if isinstance(i, int) and isinstance(j, int): self.rep.setitem(i, j, value) else: raise NotImplementedError
@classmethod def from_rep(cls, rep): """Create a new DomainMatrix efficiently from DDM/SDM.
Examples ========
Create a :py:class:`~.DomainMatrix` with an dense internal representation as :py:class:`~.DDM`:
>>> from sympy.polys.domains import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> from sympy.polys.matrices.ddm import DDM >>> drep = DDM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> dM = DomainMatrix.from_rep(drep) >>> dM DomainMatrix([[1, 2], [3, 4]], (2, 2), ZZ)
Create a :py:class:`~.DomainMatrix` with a sparse internal representation as :py:class:`~.SDM`:
>>> from sympy.polys.matrices import DomainMatrix >>> from sympy.polys.matrices.sdm import SDM >>> from sympy import ZZ >>> drep = SDM({0:{1:ZZ(1)},1:{0:ZZ(2)}}, (2, 2), ZZ) >>> dM = DomainMatrix.from_rep(drep) >>> dM DomainMatrix({0: {1: 1}, 1: {0: 2}}, (2, 2), ZZ)
Parameters ==========
rep: SDM or DDM The internal sparse or dense representation of the matrix.
Returns =======
DomainMatrix A :py:class:`~.DomainMatrix` wrapping *rep*.
Notes =====
This takes ownership of rep as its internal representation. If rep is being mutated elsewhere then a copy should be provided to ``from_rep``. Only minimal verification or checking is done on *rep* as this is supposed to be an efficient internal routine.
"""
if not isinstance(rep, (DDM, SDM)): raise TypeError("rep should be of type DDM or SDM") self = super().__new__(cls) self.rep = rep self.shape = rep.shape self.domain = rep.domain return self
@classmethod def from_list(cls, rows, domain): r"""
Convert a list of lists into a DomainMatrix
Parameters ==========
rows: list of lists Each element of the inner lists should be either the single arg, or tuple of args, that would be passed to the domain constructor in order to form an element of the domain. See examples.
Returns =======
DomainMatrix containing elements defined in rows
Examples ========
>>> from sympy.polys.matrices import DomainMatrix >>> from sympy import FF, QQ, ZZ >>> A = DomainMatrix.from_list([[1, 0, 1], [0, 0, 1]], ZZ) >>> A DomainMatrix([[1, 0, 1], [0, 0, 1]], (2, 3), ZZ) >>> B = DomainMatrix.from_list([[1, 0, 1], [0, 0, 1]], FF(7)) >>> B DomainMatrix([[1 mod 7, 0 mod 7, 1 mod 7], [0 mod 7, 0 mod 7, 1 mod 7]], (2, 3), GF(7)) >>> C = DomainMatrix.from_list([[(1, 2), (3, 1)], [(1, 4), (5, 1)]], QQ) >>> C DomainMatrix([[1/2, 3], [1/4, 5]], (2, 2), QQ)
See Also ========
from_list_sympy
"""
nrows = len(rows) ncols = 0 if not nrows else len(rows[0]) conv = lambda e: domain(*e) if isinstance(e, tuple) else domain(e) domain_rows = [[conv(e) for e in row] for row in rows] return DomainMatrix(domain_rows, (nrows, ncols), domain)
@classmethod def from_list_sympy(cls, nrows, ncols, rows, **kwargs): r"""
Convert a list of lists of Expr into a DomainMatrix using construct_domain
Parameters ==========
nrows: number of rows ncols: number of columns rows: list of lists
Returns =======
DomainMatrix containing elements of rows
Examples ========
>>> from sympy.polys.matrices import DomainMatrix >>> from sympy.abc import x, y, z >>> A = DomainMatrix.from_list_sympy(1, 3, [[x, y, z]]) >>> A DomainMatrix([[x, y, z]], (1, 3), ZZ[x,y,z])
See Also ========
sympy.polys.constructor.construct_domain, from_dict_sympy
"""
assert len(rows) == nrows assert all(len(row) == ncols for row in rows)
items_sympy = [_sympify(item) for row in rows for item in row]
domain, items_domain = cls.get_domain(items_sympy, **kwargs)
domain_rows = [[items_domain[ncols*r + c] for c in range(ncols)] for r in range(nrows)]
return DomainMatrix(domain_rows, (nrows, ncols), domain)
@classmethod def from_dict_sympy(cls, nrows, ncols, elemsdict, **kwargs): """
Parameters ==========
nrows: number of rows ncols: number of cols elemsdict: dict of dicts containing non-zero elements of the DomainMatrix
Returns =======
DomainMatrix containing elements of elemsdict
Examples ========
>>> from sympy.polys.matrices import DomainMatrix >>> from sympy.abc import x,y,z >>> elemsdict = {0: {0:x}, 1:{1: y}, 2: {2: z}} >>> A = DomainMatrix.from_dict_sympy(3, 3, elemsdict) >>> A DomainMatrix({0: {0: x}, 1: {1: y}, 2: {2: z}}, (3, 3), ZZ[x,y,z])
See Also ========
from_list_sympy
"""
if not all(0 <= r < nrows for r in elemsdict): raise DMBadInputError("Row out of range") if not all(0 <= c < ncols for row in elemsdict.values() for c in row): raise DMBadInputError("Column out of range")
items_sympy = [_sympify(item) for row in elemsdict.values() for item in row.values()] domain, items_domain = cls.get_domain(items_sympy, **kwargs)
idx = 0 items_dict = {} for i, row in elemsdict.items(): items_dict[i] = {} for j in row: items_dict[i][j] = items_domain[idx] idx += 1
return DomainMatrix(items_dict, (nrows, ncols), domain)
@classmethod def from_Matrix(cls, M, fmt='sparse',**kwargs): r"""
Convert Matrix to DomainMatrix
Parameters ==========
M: Matrix
Returns =======
Returns DomainMatrix with identical elements as M
Examples ========
>>> from sympy import Matrix >>> from sympy.polys.matrices import DomainMatrix >>> M = Matrix([ ... [1.0, 3.4], ... [2.4, 1]]) >>> A = DomainMatrix.from_Matrix(M) >>> A DomainMatrix({0: {0: 1.0, 1: 3.4}, 1: {0: 2.4, 1: 1.0}}, (2, 2), RR)
We can keep internal representation as ddm using fmt='dense' >>> from sympy import Matrix, QQ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix.from_Matrix(Matrix([[QQ(1, 2), QQ(3, 4)], [QQ(0, 1), QQ(0, 1)]]), fmt='dense') >>> A.rep [[1/2, 3/4], [0, 0]]
See Also ========
Matrix
"""
if fmt == 'dense': return cls.from_list_sympy(*M.shape, M.tolist(), **kwargs)
return cls.from_dict_sympy(*M.shape, M.todod(), **kwargs)
@classmethod def get_domain(cls, items_sympy, **kwargs): K, items_K = construct_domain(items_sympy, **kwargs) return K, items_K
def copy(self): return self.from_rep(self.rep.copy())
def convert_to(self, K): r"""
Change the domain of DomainMatrix to desired domain or field
Parameters ==========
K : Represents the desired domain or field. Alternatively, ``None`` may be passed, in which case this method just returns a copy of this DomainMatrix.
Returns =======
DomainMatrix DomainMatrix with the desired domain or field
Examples ========
>>> from sympy import ZZ, ZZ_I >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [ZZ(1), ZZ(2)], ... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
>>> A.convert_to(ZZ_I) DomainMatrix([[1, 2], [3, 4]], (2, 2), ZZ_I)
"""
if K is None: return self.copy() return self.from_rep(self.rep.convert_to(K))
def to_sympy(self): return self.convert_to(EXRAW)
def to_field(self): r"""
Returns a DomainMatrix with the appropriate field
Returns =======
DomainMatrix DomainMatrix with the appropriate field
Examples ========
>>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [ZZ(1), ZZ(2)], ... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
>>> A.to_field() DomainMatrix([[1, 2], [3, 4]], (2, 2), QQ)
"""
K = self.domain.get_field() return self.convert_to(K)
def to_sparse(self): """
Return a sparse DomainMatrix representation of *self*.
Examples ========
>>> from sympy.polys.matrices import DomainMatrix >>> from sympy import QQ >>> A = DomainMatrix([[1, 0],[0, 2]], (2, 2), QQ) >>> A.rep [[1, 0], [0, 2]] >>> B = A.to_sparse() >>> B.rep {0: {0: 1}, 1: {1: 2}} """
if self.rep.fmt == 'sparse': return self
return self.from_rep(SDM.from_ddm(self.rep))
def to_dense(self): """
Return a dense DomainMatrix representation of *self*.
Examples ========
>>> from sympy.polys.matrices import DomainMatrix >>> from sympy import QQ >>> A = DomainMatrix({0: {0: 1}, 1: {1: 2}}, (2, 2), QQ) >>> A.rep {0: {0: 1}, 1: {1: 2}} >>> B = A.to_dense() >>> B.rep [[1, 0], [0, 2]]
"""
if self.rep.fmt == 'dense': return self
return self.from_rep(SDM.to_ddm(self.rep))
@classmethod def _unify_domain(cls, *matrices): """Convert matrices to a common domain""" domains = {matrix.domain for matrix in matrices} if len(domains) == 1: return matrices domain = reduce(lambda x, y: x.unify(y), domains) return tuple(matrix.convert_to(domain) for matrix in matrices)
@classmethod def _unify_fmt(cls, *matrices, fmt=None): """Convert matrices to the same format.
If all matrices have the same format, then return unmodified. Otherwise convert both to the preferred format given as *fmt* which should be 'dense' or 'sparse'. """
formats = {matrix.rep.fmt for matrix in matrices} if len(formats) == 1: return matrices if fmt == 'sparse': return tuple(matrix.to_sparse() for matrix in matrices) elif fmt == 'dense': return tuple(matrix.to_dense() for matrix in matrices) else: raise ValueError("fmt should be 'sparse' or 'dense'")
def unify(self, *others, fmt=None): """
Unifies the domains and the format of self and other matrices.
Parameters ==========
others : DomainMatrix
fmt: string 'dense', 'sparse' or `None` (default) The preferred format to convert to if self and other are not already in the same format. If `None` or not specified then no conversion if performed.
Returns =======
Tuple[DomainMatrix] Matrices with unified domain and format
Examples ========
Unify the domain of DomainMatrix that have different domains:
>>> from sympy import ZZ, QQ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([[ZZ(1), ZZ(2)]], (1, 2), ZZ) >>> B = DomainMatrix([[QQ(1, 2), QQ(2)]], (1, 2), QQ) >>> Aq, Bq = A.unify(B) >>> Aq DomainMatrix([[1, 2]], (1, 2), QQ) >>> Bq DomainMatrix([[1/2, 2]], (1, 2), QQ)
Unify the format (dense or sparse):
>>> A = DomainMatrix([[ZZ(1), ZZ(2)]], (1, 2), ZZ) >>> B = DomainMatrix({0:{0: ZZ(1)}}, (2, 2), ZZ) >>> B.rep {0: {0: 1}}
>>> A2, B2 = A.unify(B, fmt='dense') >>> B2.rep [[1, 0], [0, 0]]
See Also ========
convert_to, to_dense, to_sparse
"""
matrices = (self,) + others matrices = DomainMatrix._unify_domain(*matrices) if fmt is not None: matrices = DomainMatrix._unify_fmt(*matrices, fmt=fmt) return matrices
def to_Matrix(self): r"""
Convert DomainMatrix to Matrix
Returns =======
Matrix MutableDenseMatrix for the DomainMatrix
Examples ========
>>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [ZZ(1), ZZ(2)], ... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
>>> A.to_Matrix() Matrix([ [1, 2], [3, 4]])
See Also ========
from_Matrix
"""
from sympy.matrices.dense import MutableDenseMatrix elemlist = self.rep.to_list() elements_sympy = [self.domain.to_sympy(e) for row in elemlist for e in row] return MutableDenseMatrix(*self.shape, elements_sympy)
def to_list(self): return self.rep.to_list()
def to_list_flat(self): return self.rep.to_list_flat()
def to_dok(self): return self.rep.to_dok()
def __repr__(self): return 'DomainMatrix(%s, %r, %r)' % (str(self.rep), self.shape, self.domain)
def transpose(self): """Matrix transpose of ``self``""" return self.from_rep(self.rep.transpose())
def flat(self): rows, cols = self.shape return [self[i,j].element for i in range(rows) for j in range(cols)]
@property def is_zero_matrix(self): return self.rep.is_zero_matrix()
@property def is_upper(self): """
Says whether this matrix is upper-triangular. True can be returned even if the matrix is not square. """
return self.rep.is_upper()
@property def is_lower(self): """
Says whether this matrix is lower-triangular. True can be returned even if the matrix is not square. """
return self.rep.is_lower()
@property def is_square(self): return self.shape[0] == self.shape[1]
def rank(self): rref, pivots = self.rref() return len(pivots)
def hstack(A, *B): r"""Horizontally stack the given matrices.
Parameters ==========
B: DomainMatrix Matrices to stack horizontally.
Returns =======
DomainMatrix DomainMatrix by stacking horizontally.
Examples ========
>>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> B = DomainMatrix([[ZZ(5), ZZ(6)], [ZZ(7), ZZ(8)]], (2, 2), ZZ) >>> A.hstack(B) DomainMatrix([[1, 2, 5, 6], [3, 4, 7, 8]], (2, 4), ZZ)
>>> C = DomainMatrix([[ZZ(9), ZZ(10)], [ZZ(11), ZZ(12)]], (2, 2), ZZ) >>> A.hstack(B, C) DomainMatrix([[1, 2, 5, 6, 9, 10], [3, 4, 7, 8, 11, 12]], (2, 6), ZZ)
See Also ========
unify """
A, *B = A.unify(*B, fmt='dense') return DomainMatrix.from_rep(A.rep.hstack(*(Bk.rep for Bk in B)))
def vstack(A, *B): r"""Vertically stack the given matrices.
Parameters ==========
B: DomainMatrix Matrices to stack vertically.
Returns =======
DomainMatrix DomainMatrix by stacking vertically.
Examples ========
>>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> B = DomainMatrix([[ZZ(5), ZZ(6)], [ZZ(7), ZZ(8)]], (2, 2), ZZ) >>> A.vstack(B) DomainMatrix([[1, 2], [3, 4], [5, 6], [7, 8]], (4, 2), ZZ)
>>> C = DomainMatrix([[ZZ(9), ZZ(10)], [ZZ(11), ZZ(12)]], (2, 2), ZZ) >>> A.vstack(B, C) DomainMatrix([[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12]], (6, 2), ZZ)
See Also ========
unify """
A, *B = A.unify(*B, fmt='dense') return DomainMatrix.from_rep(A.rep.vstack(*(Bk.rep for Bk in B)))
def applyfunc(self, func, domain=None): if domain is None: domain = self.domain return self.from_rep(self.rep.applyfunc(func, domain))
def __add__(A, B): if not isinstance(B, DomainMatrix): return NotImplemented A, B = A.unify(B, fmt='dense') return A.add(B)
def __sub__(A, B): if not isinstance(B, DomainMatrix): return NotImplemented A, B = A.unify(B, fmt='dense') return A.sub(B)
def __neg__(A): return A.neg()
def __mul__(A, B): """A * B""" if isinstance(B, DomainMatrix): A, B = A.unify(B, fmt='dense') return A.matmul(B) elif B in A.domain: return A.scalarmul(B) elif isinstance(B, DomainScalar): A, B = A.unify(B) return A.scalarmul(B.element) else: return NotImplemented
def __rmul__(A, B): if B in A.domain: return A.rscalarmul(B) elif isinstance(B, DomainScalar): A, B = A.unify(B) return A.rscalarmul(B.element) else: return NotImplemented
def __pow__(A, n): """A ** n""" if not isinstance(n, int): return NotImplemented return A.pow(n)
def _check(a, op, b, ashape, bshape): if a.domain != b.domain: msg = "Domain mismatch: %s %s %s" % (a.domain, op, b.domain) raise DMDomainError(msg) if ashape != bshape: msg = "Shape mismatch: %s %s %s" % (a.shape, op, b.shape) raise DMShapeError(msg) if a.rep.fmt != b.rep.fmt: msg = "Format mismatch: %s %s %s" % (a.rep.fmt, op, b.rep.fmt) raise DMFormatError(msg)
def add(A, B): r"""
Adds two DomainMatrix matrices of the same Domain
Parameters ==========
A, B: DomainMatrix matrices to add
Returns =======
DomainMatrix DomainMatrix after Addition
Raises ======
DMShapeError If the dimensions of the two DomainMatrix are not equal
ValueError If the domain of the two DomainMatrix are not same
Examples ========
>>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [ZZ(1), ZZ(2)], ... [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> B = DomainMatrix([ ... [ZZ(4), ZZ(3)], ... [ZZ(2), ZZ(1)]], (2, 2), ZZ)
>>> A.add(B) DomainMatrix([[5, 5], [5, 5]], (2, 2), ZZ)
See Also ========
sub, matmul
"""
A._check('+', B, A.shape, B.shape) return A.from_rep(A.rep.add(B.rep))
def sub(A, B): r"""
Subtracts two DomainMatrix matrices of the same Domain
Parameters ==========
A, B: DomainMatrix matrices to substract
Returns =======
DomainMatrix DomainMatrix after Substraction
Raises ======
DMShapeError If the dimensions of the two DomainMatrix are not equal
ValueError If the domain of the two DomainMatrix are not same
Examples ========
>>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [ZZ(1), ZZ(2)], ... [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> B = DomainMatrix([ ... [ZZ(4), ZZ(3)], ... [ZZ(2), ZZ(1)]], (2, 2), ZZ)
>>> A.sub(B) DomainMatrix([[-3, -1], [1, 3]], (2, 2), ZZ)
See Also ========
add, matmul
"""
A._check('-', B, A.shape, B.shape) return A.from_rep(A.rep.sub(B.rep))
def neg(A): r"""
Returns the negative of DomainMatrix
Parameters ==========
A : Represents a DomainMatrix
Returns =======
DomainMatrix DomainMatrix after Negation
Examples ========
>>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [ZZ(1), ZZ(2)], ... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
>>> A.neg() DomainMatrix([[-1, -2], [-3, -4]], (2, 2), ZZ)
"""
return A.from_rep(A.rep.neg())
def mul(A, b): r"""
Performs term by term multiplication for the second DomainMatrix w.r.t first DomainMatrix. Returns a DomainMatrix whose rows are list of DomainMatrix matrices created after term by term multiplication.
Parameters ==========
A, B: DomainMatrix matrices to multiply term-wise
Returns =======
DomainMatrix DomainMatrix after term by term multiplication
Examples ========
>>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [ZZ(1), ZZ(2)], ... [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> B = DomainMatrix([ ... [ZZ(1), ZZ(1)], ... [ZZ(0), ZZ(1)]], (2, 2), ZZ)
>>> A.mul(B) DomainMatrix([[DomainMatrix([[1, 1], [0, 1]], (2, 2), ZZ), DomainMatrix([[2, 2], [0, 2]], (2, 2), ZZ)], [DomainMatrix([[3, 3], [0, 3]], (2, 2), ZZ), DomainMatrix([[4, 4], [0, 4]], (2, 2), ZZ)]], (2, 2), ZZ)
See Also ========
matmul
"""
return A.from_rep(A.rep.mul(b))
def rmul(A, b): return A.from_rep(A.rep.rmul(b))
def matmul(A, B): r"""
Performs matrix multiplication of two DomainMatrix matrices
Parameters ==========
A, B: DomainMatrix to multiply
Returns =======
DomainMatrix DomainMatrix after multiplication
Examples ========
>>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [ZZ(1), ZZ(2)], ... [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> B = DomainMatrix([ ... [ZZ(1), ZZ(1)], ... [ZZ(0), ZZ(1)]], (2, 2), ZZ)
>>> A.matmul(B) DomainMatrix([[1, 3], [3, 7]], (2, 2), ZZ)
See Also ========
mul, pow, add, sub
"""
A._check('*', B, A.shape[1], B.shape[0]) return A.from_rep(A.rep.matmul(B.rep))
def _scalarmul(A, lamda, reverse): if lamda == A.domain.zero: return DomainMatrix.zeros(A.shape, A.domain) elif lamda == A.domain.one: return A.copy() elif reverse: return A.rmul(lamda) else: return A.mul(lamda)
def scalarmul(A, lamda): return A._scalarmul(lamda, reverse=False)
def rscalarmul(A, lamda): return A._scalarmul(lamda, reverse=True)
def mul_elementwise(A, B): assert A.domain == B.domain return A.from_rep(A.rep.mul_elementwise(B.rep))
def __truediv__(A, lamda): """ Method for Scalar Divison""" if isinstance(lamda, int) or ZZ.of_type(lamda): lamda = DomainScalar(ZZ(lamda), ZZ)
if not isinstance(lamda, DomainScalar): return NotImplemented
A, lamda = A.to_field().unify(lamda) if lamda.element == lamda.domain.zero: raise ZeroDivisionError if lamda.element == lamda.domain.one: return A.to_field()
return A.mul(1 / lamda.element)
def pow(A, n): r"""
Computes A**n
Parameters ==========
A : DomainMatrix
n : exponent for A
Returns =======
DomainMatrix DomainMatrix on computing A**n
Raises ======
NotImplementedError if n is negative.
Examples ========
>>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [ZZ(1), ZZ(1)], ... [ZZ(0), ZZ(1)]], (2, 2), ZZ)
>>> A.pow(2) DomainMatrix([[1, 2], [0, 1]], (2, 2), ZZ)
See Also ========
matmul
"""
nrows, ncols = A.shape if nrows != ncols: raise DMNonSquareMatrixError('Power of a nonsquare matrix') if n < 0: raise NotImplementedError('Negative powers') elif n == 0: return A.eye(nrows, A.domain) elif n == 1: return A elif n % 2 == 1: return A * A**(n - 1) else: sqrtAn = A ** (n // 2) return sqrtAn * sqrtAn
def scc(self): """Compute the strongly connected components of a DomainMatrix
Explanation ===========
A square matrix can be considered as the adjacency matrix for a directed graph where the row and column indices are the vertices. In this graph if there is an edge from vertex ``i`` to vertex ``j`` if ``M[i, j]`` is nonzero. This routine computes the strongly connected components of that graph which are subsets of the rows and columns that are connected by some nonzero element of the matrix. The strongly connected components are useful because many operations such as the determinant can be computed by working with the submatrices corresponding to each component.
Examples ========
Find the strongly connected components of a matrix:
>>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> M = DomainMatrix([[ZZ(1), ZZ(0), ZZ(2)], ... [ZZ(0), ZZ(3), ZZ(0)], ... [ZZ(4), ZZ(6), ZZ(5)]], (3, 3), ZZ) >>> M.scc() [[1], [0, 2]]
Compute the determinant from the components:
>>> MM = M.to_Matrix() >>> MM Matrix([ [1, 0, 2], [0, 3, 0], [4, 6, 5]]) >>> MM[[1], [1]] Matrix([[3]]) >>> MM[[0, 2], [0, 2]] Matrix([ [1, 2], [4, 5]]) >>> MM.det() -9 >>> MM[[1], [1]].det() * MM[[0, 2], [0, 2]].det() -9
The components are given in reverse topological order and represent a permutation of the rows and columns that will bring the matrix into block lower-triangular form:
>>> MM[[1, 0, 2], [1, 0, 2]] Matrix([ [3, 0, 0], [0, 1, 2], [6, 4, 5]])
Returns =======
List of lists of integers Each list represents a strongly connected component.
See also ========
sympy.matrices.matrices.MatrixBase.strongly_connected_components sympy.utilities.iterables.strongly_connected_components
"""
rows, cols = self.shape assert rows == cols return self.rep.scc()
def rref(self): r"""
Returns reduced-row echelon form and list of pivots for the DomainMatrix
Returns =======
(DomainMatrix, list) reduced-row echelon form and list of pivots for the DomainMatrix
Raises ======
ValueError If the domain of DomainMatrix not a Field
Examples ========
>>> from sympy import QQ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [QQ(2), QQ(-1), QQ(0)], ... [QQ(-1), QQ(2), QQ(-1)], ... [QQ(0), QQ(0), QQ(2)]], (3, 3), QQ)
>>> rref_matrix, rref_pivots = A.rref() >>> rref_matrix DomainMatrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]], (3, 3), QQ) >>> rref_pivots (0, 1, 2)
See Also ========
convert_to, lu
"""
if not self.domain.is_Field: raise DMNotAField('Not a field') rref_ddm, pivots = self.rep.rref() return self.from_rep(rref_ddm), tuple(pivots)
def columnspace(self): r"""
Returns the columnspace for the DomainMatrix
Returns =======
DomainMatrix The columns of this matrix form a basis for the columnspace.
Examples ========
>>> from sympy import QQ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [QQ(1), QQ(-1)], ... [QQ(2), QQ(-2)]], (2, 2), QQ) >>> A.columnspace() DomainMatrix([[1], [2]], (2, 1), QQ)
"""
if not self.domain.is_Field: raise DMNotAField('Not a field') rref, pivots = self.rref() rows, cols = self.shape return self.extract(range(rows), pivots)
def rowspace(self): r"""
Returns the rowspace for the DomainMatrix
Returns =======
DomainMatrix The rows of this matrix form a basis for the rowspace.
Examples ========
>>> from sympy import QQ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [QQ(1), QQ(-1)], ... [QQ(2), QQ(-2)]], (2, 2), QQ) >>> A.rowspace() DomainMatrix([[1, -1]], (1, 2), QQ)
"""
if not self.domain.is_Field: raise DMNotAField('Not a field') rref, pivots = self.rref() rows, cols = self.shape return self.extract(range(len(pivots)), range(cols))
def nullspace(self): r"""
Returns the nullspace for the DomainMatrix
Returns =======
DomainMatrix The rows of this matrix form a basis for the nullspace.
Examples ========
>>> from sympy import QQ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [QQ(1), QQ(-1)], ... [QQ(2), QQ(-2)]], (2, 2), QQ) >>> A.nullspace() DomainMatrix([[1, 1]], (1, 2), QQ)
"""
if not self.domain.is_Field: raise DMNotAField('Not a field') return self.from_rep(self.rep.nullspace()[0])
def inv(self): r"""
Finds the inverse of the DomainMatrix if exists
Returns =======
DomainMatrix DomainMatrix after inverse
Raises ======
ValueError If the domain of DomainMatrix not a Field
DMNonSquareMatrixError If the DomainMatrix is not a not Square DomainMatrix
Examples ========
>>> from sympy import QQ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [QQ(2), QQ(-1), QQ(0)], ... [QQ(-1), QQ(2), QQ(-1)], ... [QQ(0), QQ(0), QQ(2)]], (3, 3), QQ) >>> A.inv() DomainMatrix([[2/3, 1/3, 1/6], [1/3, 2/3, 1/3], [0, 0, 1/2]], (3, 3), QQ)
See Also ========
neg
"""
if not self.domain.is_Field: raise DMNotAField('Not a field') m, n = self.shape if m != n: raise DMNonSquareMatrixError inv = self.rep.inv() return self.from_rep(inv)
def det(self): r"""
Returns the determinant of a Square DomainMatrix
Returns =======
S.Complexes determinant of Square DomainMatrix
Raises ======
ValueError If the domain of DomainMatrix not a Field
Examples ========
>>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [ZZ(1), ZZ(2)], ... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
>>> A.det() -2
"""
m, n = self.shape if m != n: raise DMNonSquareMatrixError return self.rep.det()
def lu(self): r"""
Returns Lower and Upper decomposition of the DomainMatrix
Returns =======
(L, U, exchange) L, U are Lower and Upper decomposition of the DomainMatrix, exchange is the list of indices of rows exchanged in the decomposition.
Raises ======
ValueError If the domain of DomainMatrix not a Field
Examples ========
>>> from sympy import QQ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [QQ(1), QQ(-1)], ... [QQ(2), QQ(-2)]], (2, 2), QQ) >>> A.lu() (DomainMatrix([[1, 0], [2, 1]], (2, 2), QQ), DomainMatrix([[1, -1], [0, 0]], (2, 2), QQ), [])
See Also ========
lu_solve
"""
if not self.domain.is_Field: raise DMNotAField('Not a field') L, U, swaps = self.rep.lu() return self.from_rep(L), self.from_rep(U), swaps
def lu_solve(self, rhs): r"""
Solver for DomainMatrix x in the A*x = B
Parameters ==========
rhs : DomainMatrix B
Returns =======
DomainMatrix x in A*x = B
Raises ======
DMShapeError If the DomainMatrix A and rhs have different number of rows
ValueError If the domain of DomainMatrix A not a Field
Examples ========
>>> from sympy import QQ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [QQ(1), QQ(2)], ... [QQ(3), QQ(4)]], (2, 2), QQ) >>> B = DomainMatrix([ ... [QQ(1), QQ(1)], ... [QQ(0), QQ(1)]], (2, 2), QQ)
>>> A.lu_solve(B) DomainMatrix([[-2, -1], [3/2, 1]], (2, 2), QQ)
See Also ========
lu
"""
if self.shape[0] != rhs.shape[0]: raise DMShapeError("Shape") if not self.domain.is_Field: raise DMNotAField('Not a field') sol = self.rep.lu_solve(rhs.rep) return self.from_rep(sol)
def _solve(A, b): # XXX: Not sure about this method or its signature. It is just created # because it is needed by the holonomic module. if A.shape[0] != b.shape[0]: raise DMShapeError("Shape") if A.domain != b.domain or not A.domain.is_Field: raise DMNotAField('Not a field') Aaug = A.hstack(b) Arref, pivots = Aaug.rref() particular = Arref.from_rep(Arref.rep.particular()) nullspace_rep, nonpivots = Arref[:,:-1].rep.nullspace() nullspace = Arref.from_rep(nullspace_rep) return particular, nullspace
def charpoly(self): r"""
Returns the coefficients of the characteristic polynomial of the DomainMatrix. These elements will be domain elements. The domain of the elements will be same as domain of the DomainMatrix.
Returns =======
list coefficients of the characteristic polynomial
Raises ======
DMNonSquareMatrixError If the DomainMatrix is not a not Square DomainMatrix
Examples ========
>>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [ZZ(1), ZZ(2)], ... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
>>> A.charpoly() [1, -5, -2]
"""
m, n = self.shape if m != n: raise DMNonSquareMatrixError("not square") return self.rep.charpoly()
@classmethod def eye(cls, shape, domain): r"""
Return identity matrix of size n
Examples ========
>>> from sympy.polys.matrices import DomainMatrix >>> from sympy import QQ >>> DomainMatrix.eye(3, QQ) DomainMatrix({0: {0: 1}, 1: {1: 1}, 2: {2: 1}}, (3, 3), QQ)
"""
if isinstance(shape, int): shape = (shape, shape) return cls.from_rep(SDM.eye(shape, domain))
@classmethod def diag(cls, diagonal, domain, shape=None): r"""
Return diagonal matrix with entries from ``diagonal``.
Examples ========
>>> from sympy.polys.matrices import DomainMatrix >>> from sympy import ZZ >>> DomainMatrix.diag([ZZ(5), ZZ(6)], ZZ) DomainMatrix({0: {0: 5}, 1: {1: 6}}, (2, 2), ZZ)
"""
if shape is None: N = len(diagonal) shape = (N, N) return cls.from_rep(SDM.diag(diagonal, domain, shape))
@classmethod def zeros(cls, shape, domain, *, fmt='sparse'): """Returns a zero DomainMatrix of size shape, belonging to the specified domain
Examples ========
>>> from sympy.polys.matrices import DomainMatrix >>> from sympy import QQ >>> DomainMatrix.zeros((2, 3), QQ) DomainMatrix({}, (2, 3), QQ)
"""
return cls.from_rep(SDM.zeros(shape, domain))
@classmethod def ones(cls, shape, domain): """Returns a DomainMatrix of 1s, of size shape, belonging to the specified domain
Examples ========
>>> from sympy.polys.matrices import DomainMatrix >>> from sympy import QQ >>> DomainMatrix.ones((2,3), QQ) DomainMatrix([[1, 1, 1], [1, 1, 1]], (2, 3), QQ)
"""
return cls.from_rep(DDM.ones(shape, domain))
def __eq__(A, B): r"""
Checks for two DomainMatrix matrices to be equal or not
Parameters ==========
A, B: DomainMatrix to check equality
Returns =======
Boolean True for equal, else False
Raises ======
NotImplementedError If B is not a DomainMatrix
Examples ========
>>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [ZZ(1), ZZ(2)], ... [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> B = DomainMatrix([ ... [ZZ(1), ZZ(1)], ... [ZZ(0), ZZ(1)]], (2, 2), ZZ) >>> A.__eq__(A) True >>> A.__eq__(B) False
"""
if not isinstance(A, type(B)): return NotImplemented return A.domain == B.domain and A.rep == B.rep
def unify_eq(A, B): if A.shape != B.shape: return False if A.domain != B.domain: A, B = A.unify(B) return A == B
|