|
|
from sympy.core.symbol import Dummy from sympy.ntheory import nextprime from sympy.ntheory.modular import crt from sympy.polys.domains import PolynomialRing from sympy.polys.galoistools import ( gf_gcd, gf_from_dict, gf_gcdex, gf_div, gf_lcm) from sympy.polys.polyerrors import ModularGCDFailed
from mpmath import sqrt import random
def _trivial_gcd(f, g): """
Compute the GCD of two polynomials in trivial cases, i.e. when one or both polynomials are zero. """
ring = f.ring
if not (f or g): return ring.zero, ring.zero, ring.zero elif not f: if g.LC < ring.domain.zero: return -g, ring.zero, -ring.one else: return g, ring.zero, ring.one elif not g: if f.LC < ring.domain.zero: return -f, -ring.one, ring.zero else: return f, ring.one, ring.zero return None
def _gf_gcd(fp, gp, p): r"""
Compute the GCD of two univariate polynomials in `\mathbb{Z}_p[x]`. """
dom = fp.ring.domain
while gp: rem = fp deg = gp.degree() lcinv = dom.invert(gp.LC, p)
while True: degrem = rem.degree() if degrem < deg: break rem = (rem - gp.mul_monom((degrem - deg,)).mul_ground(lcinv * rem.LC)).trunc_ground(p)
fp = gp gp = rem
return fp.mul_ground(dom.invert(fp.LC, p)).trunc_ground(p)
def _degree_bound_univariate(f, g): r"""
Compute an upper bound for the degree of the GCD of two univariate integer polynomials `f` and `g`.
The function chooses a suitable prime `p` and computes the GCD of `f` and `g` in `\mathbb{Z}_p[x]`. The choice of `p` guarantees that the degree in `\mathbb{Z}_p[x]` is greater than or equal to the degree in `\mathbb{Z}[x]`.
Parameters ==========
f : PolyElement univariate integer polynomial g : PolyElement univariate integer polynomial
"""
gamma = f.ring.domain.gcd(f.LC, g.LC) p = 1
p = nextprime(p) while gamma % p == 0: p = nextprime(p)
fp = f.trunc_ground(p) gp = g.trunc_ground(p) hp = _gf_gcd(fp, gp, p) deghp = hp.degree() return deghp
def _chinese_remainder_reconstruction_univariate(hp, hq, p, q): r"""
Construct a polynomial `h_{pq}` in `\mathbb{Z}_{p q}[x]` such that
.. math ::
h_{pq} = h_p \; \mathrm{mod} \, p
h_{pq} = h_q \; \mathrm{mod} \, q
for relatively prime integers `p` and `q` and polynomials `h_p` and `h_q` in `\mathbb{Z}_p[x]` and `\mathbb{Z}_q[x]` respectively.
The coefficients of the polynomial `h_{pq}` are computed with the Chinese Remainder Theorem. The symmetric representation in `\mathbb{Z}_p[x]`, `\mathbb{Z}_q[x]` and `\mathbb{Z}_{p q}[x]` is used. It is assumed that `h_p` and `h_q` have the same degree.
Parameters ==========
hp : PolyElement univariate integer polynomial with coefficients in `\mathbb{Z}_p` hq : PolyElement univariate integer polynomial with coefficients in `\mathbb{Z}_q` p : Integer modulus of `h_p`, relatively prime to `q` q : Integer modulus of `h_q`, relatively prime to `p`
Examples ========
>>> from sympy.polys.modulargcd import _chinese_remainder_reconstruction_univariate >>> from sympy.polys import ring, ZZ
>>> R, x = ring("x", ZZ) >>> p = 3 >>> q = 5
>>> hp = -x**3 - 1 >>> hq = 2*x**3 - 2*x**2 + x
>>> hpq = _chinese_remainder_reconstruction_univariate(hp, hq, p, q) >>> hpq 2*x**3 + 3*x**2 + 6*x + 5
>>> hpq.trunc_ground(p) == hp True >>> hpq.trunc_ground(q) == hq True
"""
n = hp.degree() x = hp.ring.gens[0] hpq = hp.ring.zero
for i in range(n+1): hpq[(i,)] = crt([p, q], [hp.coeff(x**i), hq.coeff(x**i)], symmetric=True)[0]
hpq.strip_zero() return hpq
def modgcd_univariate(f, g): r"""
Computes the GCD of two polynomials in `\mathbb{Z}[x]` using a modular algorithm.
The algorithm computes the GCD of two univariate integer polynomials `f` and `g` by computing the GCD in `\mathbb{Z}_p[x]` for suitable primes `p` and then reconstructing the coefficients with the Chinese Remainder Theorem. Trial division is only made for candidates which are very likely the desired GCD.
Parameters ==========
f : PolyElement univariate integer polynomial g : PolyElement univariate integer polynomial
Returns =======
h : PolyElement GCD of the polynomials `f` and `g` cff : PolyElement cofactor of `f`, i.e. `\frac{f}{h}` cfg : PolyElement cofactor of `g`, i.e. `\frac{g}{h}`
Examples ========
>>> from sympy.polys.modulargcd import modgcd_univariate >>> from sympy.polys import ring, ZZ
>>> R, x = ring("x", ZZ)
>>> f = x**5 - 1 >>> g = x - 1
>>> h, cff, cfg = modgcd_univariate(f, g) >>> h, cff, cfg (x - 1, x**4 + x**3 + x**2 + x + 1, 1)
>>> cff * h == f True >>> cfg * h == g True
>>> f = 6*x**2 - 6 >>> g = 2*x**2 + 4*x + 2
>>> h, cff, cfg = modgcd_univariate(f, g) >>> h, cff, cfg (2*x + 2, 3*x - 3, x + 1)
>>> cff * h == f True >>> cfg * h == g True
References ==========
1. [Monagan00]_
"""
assert f.ring == g.ring and f.ring.domain.is_ZZ
result = _trivial_gcd(f, g) if result is not None: return result
ring = f.ring
cf, f = f.primitive() cg, g = g.primitive() ch = ring.domain.gcd(cf, cg)
bound = _degree_bound_univariate(f, g) if bound == 0: return ring(ch), f.mul_ground(cf // ch), g.mul_ground(cg // ch)
gamma = ring.domain.gcd(f.LC, g.LC) m = 1 p = 1
while True: p = nextprime(p) while gamma % p == 0: p = nextprime(p)
fp = f.trunc_ground(p) gp = g.trunc_ground(p) hp = _gf_gcd(fp, gp, p) deghp = hp.degree()
if deghp > bound: continue elif deghp < bound: m = 1 bound = deghp continue
hp = hp.mul_ground(gamma).trunc_ground(p) if m == 1: m = p hlastm = hp continue
hm = _chinese_remainder_reconstruction_univariate(hp, hlastm, p, m) m *= p
if not hm == hlastm: hlastm = hm continue
h = hm.quo_ground(hm.content()) fquo, frem = f.div(h) gquo, grem = g.div(h) if not frem and not grem: if h.LC < 0: ch = -ch h = h.mul_ground(ch) cff = fquo.mul_ground(cf // ch) cfg = gquo.mul_ground(cg // ch) return h, cff, cfg
def _primitive(f, p): r"""
Compute the content and the primitive part of a polynomial in `\mathbb{Z}_p[x_0, \ldots, x_{k-2}, y] \cong \mathbb{Z}_p[y][x_0, \ldots, x_{k-2}]`.
Parameters ==========
f : PolyElement integer polynomial in `\mathbb{Z}_p[x0, \ldots, x{k-2}, y]` p : Integer modulus of `f`
Returns =======
contf : PolyElement integer polynomial in `\mathbb{Z}_p[y]`, content of `f` ppf : PolyElement primitive part of `f`, i.e. `\frac{f}{contf}`
Examples ========
>>> from sympy.polys.modulargcd import _primitive >>> from sympy.polys import ring, ZZ
>>> R, x, y = ring("x, y", ZZ) >>> p = 3
>>> f = x**2*y**2 + x**2*y - y**2 - y >>> _primitive(f, p) (y**2 + y, x**2 - 1)
>>> R, x, y, z = ring("x, y, z", ZZ)
>>> f = x*y*z - y**2*z**2 >>> _primitive(f, p) (z, x*y - y**2*z)
"""
ring = f.ring dom = ring.domain k = ring.ngens
coeffs = {} for monom, coeff in f.iterterms(): if monom[:-1] not in coeffs: coeffs[monom[:-1]] = {} coeffs[monom[:-1]][monom[-1]] = coeff
cont = [] for coeff in iter(coeffs.values()): cont = gf_gcd(cont, gf_from_dict(coeff, p, dom), p, dom)
yring = ring.clone(symbols=ring.symbols[k-1]) contf = yring.from_dense(cont).trunc_ground(p)
return contf, f.quo(contf.set_ring(ring))
def _deg(f): r"""
Compute the degree of a multivariate polynomial `f \in K[x_0, \ldots, x_{k-2}, y] \cong K[y][x_0, \ldots, x_{k-2}]`.
Parameters ==========
f : PolyElement polynomial in `K[x_0, \ldots, x_{k-2}, y]`
Returns =======
degf : Integer tuple degree of `f` in `x_0, \ldots, x_{k-2}`
Examples ========
>>> from sympy.polys.modulargcd import _deg >>> from sympy.polys import ring, ZZ
>>> R, x, y = ring("x, y", ZZ)
>>> f = x**2*y**2 + x**2*y - 1 >>> _deg(f) (2,)
>>> R, x, y, z = ring("x, y, z", ZZ)
>>> f = x**2*y**2 + x**2*y - 1 >>> _deg(f) (2, 2)
>>> f = x*y*z - y**2*z**2 >>> _deg(f) (1, 1)
"""
k = f.ring.ngens degf = (0,) * (k-1) for monom in f.itermonoms(): if monom[:-1] > degf: degf = monom[:-1] return degf
def _LC(f): r"""
Compute the leading coefficient of a multivariate polynomial `f \in K[x_0, \ldots, x_{k-2}, y] \cong K[y][x_0, \ldots, x_{k-2}]`.
Parameters ==========
f : PolyElement polynomial in `K[x_0, \ldots, x_{k-2}, y]`
Returns =======
lcf : PolyElement polynomial in `K[y]`, leading coefficient of `f`
Examples ========
>>> from sympy.polys.modulargcd import _LC >>> from sympy.polys import ring, ZZ
>>> R, x, y = ring("x, y", ZZ)
>>> f = x**2*y**2 + x**2*y - 1 >>> _LC(f) y**2 + y
>>> R, x, y, z = ring("x, y, z", ZZ)
>>> f = x**2*y**2 + x**2*y - 1 >>> _LC(f) 1
>>> f = x*y*z - y**2*z**2 >>> _LC(f) z
"""
ring = f.ring k = ring.ngens yring = ring.clone(symbols=ring.symbols[k-1]) y = yring.gens[0] degf = _deg(f)
lcf = yring.zero for monom, coeff in f.iterterms(): if monom[:-1] == degf: lcf += coeff*y**monom[-1] return lcf
def _swap(f, i): """
Make the variable `x_i` the leading one in a multivariate polynomial `f`. """
ring = f.ring fswap = ring.zero for monom, coeff in f.iterterms(): monomswap = (monom[i],) + monom[:i] + monom[i+1:] fswap[monomswap] = coeff return fswap
def _degree_bound_bivariate(f, g): r"""
Compute upper degree bounds for the GCD of two bivariate integer polynomials `f` and `g`.
The GCD is viewed as a polynomial in `\mathbb{Z}[y][x]` and the function returns an upper bound for its degree and one for the degree of its content. This is done by choosing a suitable prime `p` and computing the GCD of the contents of `f \; \mathrm{mod} \, p` and `g \; \mathrm{mod} \, p`. The choice of `p` guarantees that the degree of the content in `\mathbb{Z}_p[y]` is greater than or equal to the degree in `\mathbb{Z}[y]`. To obtain the degree bound in the variable `x`, the polynomials are evaluated at `y = a` for a suitable `a \in \mathbb{Z}_p` and then their GCD in `\mathbb{Z}_p[x]` is computed. If no such `a` exists, i.e. the degree in `\mathbb{Z}_p[x]` is always smaller than the one in `\mathbb{Z}[y][x]`, then the bound is set to the minimum of the degrees of `f` and `g` in `x`.
Parameters ==========
f : PolyElement bivariate integer polynomial g : PolyElement bivariate integer polynomial
Returns =======
xbound : Integer upper bound for the degree of the GCD of the polynomials `f` and `g` in the variable `x` ycontbound : Integer upper bound for the degree of the content of the GCD of the polynomials `f` and `g` in the variable `y`
References ==========
1. [Monagan00]_
"""
ring = f.ring
gamma1 = ring.domain.gcd(f.LC, g.LC) gamma2 = ring.domain.gcd(_swap(f, 1).LC, _swap(g, 1).LC) badprimes = gamma1 * gamma2 p = 1
p = nextprime(p) while badprimes % p == 0: p = nextprime(p)
fp = f.trunc_ground(p) gp = g.trunc_ground(p) contfp, fp = _primitive(fp, p) contgp, gp = _primitive(gp, p) conthp = _gf_gcd(contfp, contgp, p) # polynomial in Z_p[y] ycontbound = conthp.degree()
# polynomial in Z_p[y] delta = _gf_gcd(_LC(fp), _LC(gp), p)
for a in range(p): if not delta.evaluate(0, a) % p: continue fpa = fp.evaluate(1, a).trunc_ground(p) gpa = gp.evaluate(1, a).trunc_ground(p) hpa = _gf_gcd(fpa, gpa, p) xbound = hpa.degree() return xbound, ycontbound
return min(fp.degree(), gp.degree()), ycontbound
def _chinese_remainder_reconstruction_multivariate(hp, hq, p, q): r"""
Construct a polynomial `h_{pq}` in `\mathbb{Z}_{p q}[x_0, \ldots, x_{k-1}]` such that
.. math ::
h_{pq} = h_p \; \mathrm{mod} \, p
h_{pq} = h_q \; \mathrm{mod} \, q
for relatively prime integers `p` and `q` and polynomials `h_p` and `h_q` in `\mathbb{Z}_p[x_0, \ldots, x_{k-1}]` and `\mathbb{Z}_q[x_0, \ldots, x_{k-1}]` respectively.
The coefficients of the polynomial `h_{pq}` are computed with the Chinese Remainder Theorem. The symmetric representation in `\mathbb{Z}_p[x_0, \ldots, x_{k-1}]`, `\mathbb{Z}_q[x_0, \ldots, x_{k-1}]` and `\mathbb{Z}_{p q}[x_0, \ldots, x_{k-1}]` is used.
Parameters ==========
hp : PolyElement multivariate integer polynomial with coefficients in `\mathbb{Z}_p` hq : PolyElement multivariate integer polynomial with coefficients in `\mathbb{Z}_q` p : Integer modulus of `h_p`, relatively prime to `q` q : Integer modulus of `h_q`, relatively prime to `p`
Examples ========
>>> from sympy.polys.modulargcd import _chinese_remainder_reconstruction_multivariate >>> from sympy.polys import ring, ZZ
>>> R, x, y = ring("x, y", ZZ) >>> p = 3 >>> q = 5
>>> hp = x**3*y - x**2 - 1 >>> hq = -x**3*y - 2*x*y**2 + 2
>>> hpq = _chinese_remainder_reconstruction_multivariate(hp, hq, p, q) >>> hpq 4*x**3*y + 5*x**2 + 3*x*y**2 + 2
>>> hpq.trunc_ground(p) == hp True >>> hpq.trunc_ground(q) == hq True
>>> R, x, y, z = ring("x, y, z", ZZ) >>> p = 6 >>> q = 5
>>> hp = 3*x**4 - y**3*z + z >>> hq = -2*x**4 + z
>>> hpq = _chinese_remainder_reconstruction_multivariate(hp, hq, p, q) >>> hpq 3*x**4 + 5*y**3*z + z
>>> hpq.trunc_ground(p) == hp True >>> hpq.trunc_ground(q) == hq True
"""
hpmonoms = set(hp.monoms()) hqmonoms = set(hq.monoms()) monoms = hpmonoms.intersection(hqmonoms) hpmonoms.difference_update(monoms) hqmonoms.difference_update(monoms)
zero = hp.ring.domain.zero
hpq = hp.ring.zero
if isinstance(hp.ring.domain, PolynomialRing): crt_ = _chinese_remainder_reconstruction_multivariate else: def crt_(cp, cq, p, q): return crt([p, q], [cp, cq], symmetric=True)[0]
for monom in monoms: hpq[monom] = crt_(hp[monom], hq[monom], p, q) for monom in hpmonoms: hpq[monom] = crt_(hp[monom], zero, p, q) for monom in hqmonoms: hpq[monom] = crt_(zero, hq[monom], p, q)
return hpq
def _interpolate_multivariate(evalpoints, hpeval, ring, i, p, ground=False): r"""
Reconstruct a polynomial `h_p` in `\mathbb{Z}_p[x_0, \ldots, x_{k-1}]` from a list of evaluation points in `\mathbb{Z}_p` and a list of polynomials in `\mathbb{Z}_p[x_0, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k-1}]`, which are the images of `h_p` evaluated in the variable `x_i`.
It is also possible to reconstruct a parameter of the ground domain, i.e. if `h_p` is a polynomial over `\mathbb{Z}_p[x_0, \ldots, x_{k-1}]`. In this case, one has to set ``ground=True``.
Parameters ==========
evalpoints : list of Integer objects list of evaluation points in `\mathbb{Z}_p` hpeval : list of PolyElement objects list of polynomials in (resp. over) `\mathbb{Z}_p[x_0, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k-1}]`, images of `h_p` evaluated in the variable `x_i` ring : PolyRing `h_p` will be an element of this ring i : Integer index of the variable which has to be reconstructed p : Integer prime number, modulus of `h_p` ground : Boolean indicates whether `x_i` is in the ground domain, default is ``False``
Returns =======
hp : PolyElement interpolated polynomial in (resp. over) `\mathbb{Z}_p[x_0, \ldots, x_{k-1}]`
"""
hp = ring.zero
if ground: domain = ring.domain.domain y = ring.domain.gens[i] else: domain = ring.domain y = ring.gens[i]
for a, hpa in zip(evalpoints, hpeval): numer = ring.one denom = domain.one for b in evalpoints: if b == a: continue
numer *= y - b denom *= a - b
denom = domain.invert(denom, p) coeff = numer.mul_ground(denom) hp += hpa.set_ring(ring) * coeff
return hp.trunc_ground(p)
def modgcd_bivariate(f, g): r"""
Computes the GCD of two polynomials in `\mathbb{Z}[x, y]` using a modular algorithm.
The algorithm computes the GCD of two bivariate integer polynomials `f` and `g` by calculating the GCD in `\mathbb{Z}_p[x, y]` for suitable primes `p` and then reconstructing the coefficients with the Chinese Remainder Theorem. To compute the bivariate GCD over `\mathbb{Z}_p`, the polynomials `f \; \mathrm{mod} \, p` and `g \; \mathrm{mod} \, p` are evaluated at `y = a` for certain `a \in \mathbb{Z}_p` and then their univariate GCD in `\mathbb{Z}_p[x]` is computed. Interpolating those yields the bivariate GCD in `\mathbb{Z}_p[x, y]`. To verify the result in `\mathbb{Z}[x, y]`, trial division is done, but only for candidates which are very likely the desired GCD.
Parameters ==========
f : PolyElement bivariate integer polynomial g : PolyElement bivariate integer polynomial
Returns =======
h : PolyElement GCD of the polynomials `f` and `g` cff : PolyElement cofactor of `f`, i.e. `\frac{f}{h}` cfg : PolyElement cofactor of `g`, i.e. `\frac{g}{h}`
Examples ========
>>> from sympy.polys.modulargcd import modgcd_bivariate >>> from sympy.polys import ring, ZZ
>>> R, x, y = ring("x, y", ZZ)
>>> f = x**2 - y**2 >>> g = x**2 + 2*x*y + y**2
>>> h, cff, cfg = modgcd_bivariate(f, g) >>> h, cff, cfg (x + y, x - y, x + y)
>>> cff * h == f True >>> cfg * h == g True
>>> f = x**2*y - x**2 - 4*y + 4 >>> g = x + 2
>>> h, cff, cfg = modgcd_bivariate(f, g) >>> h, cff, cfg (x + 2, x*y - x - 2*y + 2, 1)
>>> cff * h == f True >>> cfg * h == g True
References ==========
1. [Monagan00]_
"""
assert f.ring == g.ring and f.ring.domain.is_ZZ
result = _trivial_gcd(f, g) if result is not None: return result
ring = f.ring
cf, f = f.primitive() cg, g = g.primitive() ch = ring.domain.gcd(cf, cg)
xbound, ycontbound = _degree_bound_bivariate(f, g) if xbound == ycontbound == 0: return ring(ch), f.mul_ground(cf // ch), g.mul_ground(cg // ch)
fswap = _swap(f, 1) gswap = _swap(g, 1) degyf = fswap.degree() degyg = gswap.degree()
ybound, xcontbound = _degree_bound_bivariate(fswap, gswap) if ybound == xcontbound == 0: return ring(ch), f.mul_ground(cf // ch), g.mul_ground(cg // ch)
# TODO: to improve performance, choose the main variable here
gamma1 = ring.domain.gcd(f.LC, g.LC) gamma2 = ring.domain.gcd(fswap.LC, gswap.LC) badprimes = gamma1 * gamma2 m = 1 p = 1
while True: p = nextprime(p) while badprimes % p == 0: p = nextprime(p)
fp = f.trunc_ground(p) gp = g.trunc_ground(p) contfp, fp = _primitive(fp, p) contgp, gp = _primitive(gp, p) conthp = _gf_gcd(contfp, contgp, p) # monic polynomial in Z_p[y] degconthp = conthp.degree()
if degconthp > ycontbound: continue elif degconthp < ycontbound: m = 1 ycontbound = degconthp continue
# polynomial in Z_p[y] delta = _gf_gcd(_LC(fp), _LC(gp), p)
degcontfp = contfp.degree() degcontgp = contgp.degree() degdelta = delta.degree()
N = min(degyf - degcontfp, degyg - degcontgp, ybound - ycontbound + degdelta) + 1
if p < N: continue
n = 0 evalpoints = [] hpeval = [] unlucky = False
for a in range(p): deltaa = delta.evaluate(0, a) if not deltaa % p: continue
fpa = fp.evaluate(1, a).trunc_ground(p) gpa = gp.evaluate(1, a).trunc_ground(p) hpa = _gf_gcd(fpa, gpa, p) # monic polynomial in Z_p[x] deghpa = hpa.degree()
if deghpa > xbound: continue elif deghpa < xbound: m = 1 xbound = deghpa unlucky = True break
hpa = hpa.mul_ground(deltaa).trunc_ground(p) evalpoints.append(a) hpeval.append(hpa) n += 1
if n == N: break
if unlucky: continue if n < N: continue
hp = _interpolate_multivariate(evalpoints, hpeval, ring, 1, p)
hp = _primitive(hp, p)[1] hp = hp * conthp.set_ring(ring) degyhp = hp.degree(1)
if degyhp > ybound: continue if degyhp < ybound: m = 1 ybound = degyhp continue
hp = hp.mul_ground(gamma1).trunc_ground(p) if m == 1: m = p hlastm = hp continue
hm = _chinese_remainder_reconstruction_multivariate(hp, hlastm, p, m) m *= p
if not hm == hlastm: hlastm = hm continue
h = hm.quo_ground(hm.content()) fquo, frem = f.div(h) gquo, grem = g.div(h) if not frem and not grem: if h.LC < 0: ch = -ch h = h.mul_ground(ch) cff = fquo.mul_ground(cf // ch) cfg = gquo.mul_ground(cg // ch) return h, cff, cfg
def _modgcd_multivariate_p(f, g, p, degbound, contbound): r"""
Compute the GCD of two polynomials in `\mathbb{Z}_p[x_0, \ldots, x_{k-1}]`.
The algorithm reduces the problem step by step by evaluating the polynomials `f` and `g` at `x_{k-1} = a` for suitable `a \in \mathbb{Z}_p` and then calls itself recursively to compute the GCD in `\mathbb{Z}_p[x_0, \ldots, x_{k-2}]`. If these recursive calls are successful for enough evaluation points, the GCD in `k` variables is interpolated, otherwise the algorithm returns ``None``. Every time a GCD or a content is computed, their degrees are compared with the bounds. If a degree greater then the bound is encountered, then the current call returns ``None`` and a new evaluation point has to be chosen. If at some point the degree is smaller, the correspondent bound is updated and the algorithm fails.
Parameters ==========
f : PolyElement multivariate integer polynomial with coefficients in `\mathbb{Z}_p` g : PolyElement multivariate integer polynomial with coefficients in `\mathbb{Z}_p` p : Integer prime number, modulus of `f` and `g` degbound : list of Integer objects ``degbound[i]`` is an upper bound for the degree of the GCD of `f` and `g` in the variable `x_i` contbound : list of Integer objects ``contbound[i]`` is an upper bound for the degree of the content of the GCD in `\mathbb{Z}_p[x_i][x_0, \ldots, x_{i-1}]`, ``contbound[0]`` is not used can therefore be chosen arbitrarily.
Returns =======
h : PolyElement GCD of the polynomials `f` and `g` or ``None``
References ==========
1. [Monagan00]_ 2. [Brown71]_
"""
ring = f.ring k = ring.ngens
if k == 1: h = _gf_gcd(f, g, p).trunc_ground(p) degh = h.degree()
if degh > degbound[0]: return None if degh < degbound[0]: degbound[0] = degh raise ModularGCDFailed
return h
degyf = f.degree(k-1) degyg = g.degree(k-1)
contf, f = _primitive(f, p) contg, g = _primitive(g, p)
conth = _gf_gcd(contf, contg, p) # polynomial in Z_p[y]
degcontf = contf.degree() degcontg = contg.degree() degconth = conth.degree()
if degconth > contbound[k-1]: return None if degconth < contbound[k-1]: contbound[k-1] = degconth raise ModularGCDFailed
lcf = _LC(f) lcg = _LC(g)
delta = _gf_gcd(lcf, lcg, p) # polynomial in Z_p[y]
evaltest = delta
for i in range(k-1): evaltest *= _gf_gcd(_LC(_swap(f, i)), _LC(_swap(g, i)), p)
degdelta = delta.degree()
N = min(degyf - degcontf, degyg - degcontg, degbound[k-1] - contbound[k-1] + degdelta) + 1
if p < N: return None
n = 0 d = 0 evalpoints = [] heval = [] points = list(range(p))
while points: a = random.sample(points, 1)[0] points.remove(a)
if not evaltest.evaluate(0, a) % p: continue
deltaa = delta.evaluate(0, a) % p
fa = f.evaluate(k-1, a).trunc_ground(p) ga = g.evaluate(k-1, a).trunc_ground(p)
# polynomials in Z_p[x_0, ..., x_{k-2}] ha = _modgcd_multivariate_p(fa, ga, p, degbound, contbound)
if ha is None: d += 1 if d > n: return None continue
if ha.is_ground: h = conth.set_ring(ring).trunc_ground(p) return h
ha = ha.mul_ground(deltaa).trunc_ground(p)
evalpoints.append(a) heval.append(ha) n += 1
if n == N: h = _interpolate_multivariate(evalpoints, heval, ring, k-1, p)
h = _primitive(h, p)[1] * conth.set_ring(ring) degyh = h.degree(k-1)
if degyh > degbound[k-1]: return None if degyh < degbound[k-1]: degbound[k-1] = degyh raise ModularGCDFailed
return h
return None
def modgcd_multivariate(f, g): r"""
Compute the GCD of two polynomials in `\mathbb{Z}[x_0, \ldots, x_{k-1}]` using a modular algorithm.
The algorithm computes the GCD of two multivariate integer polynomials `f` and `g` by calculating the GCD in `\mathbb{Z}_p[x_0, \ldots, x_{k-1}]` for suitable primes `p` and then reconstructing the coefficients with the Chinese Remainder Theorem. To compute the multivariate GCD over `\mathbb{Z}_p` the recursive subroutine :func:`_modgcd_multivariate_p` is used. To verify the result in `\mathbb{Z}[x_0, \ldots, x_{k-1}]`, trial division is done, but only for candidates which are very likely the desired GCD.
Parameters ==========
f : PolyElement multivariate integer polynomial g : PolyElement multivariate integer polynomial
Returns =======
h : PolyElement GCD of the polynomials `f` and `g` cff : PolyElement cofactor of `f`, i.e. `\frac{f}{h}` cfg : PolyElement cofactor of `g`, i.e. `\frac{g}{h}`
Examples ========
>>> from sympy.polys.modulargcd import modgcd_multivariate >>> from sympy.polys import ring, ZZ
>>> R, x, y = ring("x, y", ZZ)
>>> f = x**2 - y**2 >>> g = x**2 + 2*x*y + y**2
>>> h, cff, cfg = modgcd_multivariate(f, g) >>> h, cff, cfg (x + y, x - y, x + y)
>>> cff * h == f True >>> cfg * h == g True
>>> R, x, y, z = ring("x, y, z", ZZ)
>>> f = x*z**2 - y*z**2 >>> g = x**2*z + z
>>> h, cff, cfg = modgcd_multivariate(f, g) >>> h, cff, cfg (z, x*z - y*z, x**2 + 1)
>>> cff * h == f True >>> cfg * h == g True
References ==========
1. [Monagan00]_ 2. [Brown71]_
See also ========
_modgcd_multivariate_p
"""
assert f.ring == g.ring and f.ring.domain.is_ZZ
result = _trivial_gcd(f, g) if result is not None: return result
ring = f.ring k = ring.ngens
# divide out integer content cf, f = f.primitive() cg, g = g.primitive() ch = ring.domain.gcd(cf, cg)
gamma = ring.domain.gcd(f.LC, g.LC)
badprimes = ring.domain.one for i in range(k): badprimes *= ring.domain.gcd(_swap(f, i).LC, _swap(g, i).LC)
degbound = [min(fdeg, gdeg) for fdeg, gdeg in zip(f.degrees(), g.degrees())] contbound = list(degbound)
m = 1 p = 1
while True: p = nextprime(p) while badprimes % p == 0: p = nextprime(p)
fp = f.trunc_ground(p) gp = g.trunc_ground(p)
try: # monic GCD of fp, gp in Z_p[x_0, ..., x_{k-2}, y] hp = _modgcd_multivariate_p(fp, gp, p, degbound, contbound) except ModularGCDFailed: m = 1 continue
if hp is None: continue
hp = hp.mul_ground(gamma).trunc_ground(p) if m == 1: m = p hlastm = hp continue
hm = _chinese_remainder_reconstruction_multivariate(hp, hlastm, p, m) m *= p
if not hm == hlastm: hlastm = hm continue
h = hm.primitive()[1] fquo, frem = f.div(h) gquo, grem = g.div(h) if not frem and not grem: if h.LC < 0: ch = -ch h = h.mul_ground(ch) cff = fquo.mul_ground(cf // ch) cfg = gquo.mul_ground(cg // ch) return h, cff, cfg
def _gf_div(f, g, p): r"""
Compute `\frac f g` modulo `p` for two univariate polynomials over `\mathbb Z_p`. """
ring = f.ring densequo, denserem = gf_div(f.to_dense(), g.to_dense(), p, ring.domain) return ring.from_dense(densequo), ring.from_dense(denserem)
def _rational_function_reconstruction(c, p, m): r"""
Reconstruct a rational function `\frac a b` in `\mathbb Z_p(t)` from
.. math::
c = \frac a b \; \mathrm{mod} \, m,
where `c` and `m` are polynomials in `\mathbb Z_p[t]` and `m` has positive degree.
The algorithm is based on the Euclidean Algorithm. In general, `m` is not irreducible, so it is possible that `b` is not invertible modulo `m`. In that case ``None`` is returned.
Parameters ==========
c : PolyElement univariate polynomial in `\mathbb Z[t]` p : Integer prime number m : PolyElement modulus, not necessarily irreducible
Returns =======
frac : FracElement either `\frac a b` in `\mathbb Z(t)` or ``None``
References ==========
1. [Hoeij04]_
"""
ring = c.ring domain = ring.domain M = m.degree() N = M // 2 D = M - N - 1
r0, s0 = m, ring.zero r1, s1 = c, ring.one
while r1.degree() > N: quo = _gf_div(r0, r1, p)[0] r0, r1 = r1, (r0 - quo*r1).trunc_ground(p) s0, s1 = s1, (s0 - quo*s1).trunc_ground(p)
a, b = r1, s1 if b.degree() > D or _gf_gcd(b, m, p) != 1: return None
lc = b.LC if lc != 1: lcinv = domain.invert(lc, p) a = a.mul_ground(lcinv).trunc_ground(p) b = b.mul_ground(lcinv).trunc_ground(p)
field = ring.to_field()
return field(a) / field(b)
def _rational_reconstruction_func_coeffs(hm, p, m, ring, k): r"""
Reconstruct every coefficient `c_h` of a polynomial `h` in `\mathbb Z_p(t_k)[t_1, \ldots, t_{k-1}][x, z]` from the corresponding coefficient `c_{h_m}` of a polynomial `h_m` in `\mathbb Z_p[t_1, \ldots, t_k][x, z] \cong \mathbb Z_p[t_k][t_1, \ldots, t_{k-1}][x, z]` such that
.. math::
c_{h_m} = c_h \; \mathrm{mod} \, m,
where `m \in \mathbb Z_p[t]`.
The reconstruction is based on the Euclidean Algorithm. In general, `m` is not irreducible, so it is possible that this fails for some coefficient. In that case ``None`` is returned.
Parameters ==========
hm : PolyElement polynomial in `\mathbb Z[t_1, \ldots, t_k][x, z]` p : Integer prime number, modulus of `\mathbb Z_p` m : PolyElement modulus, polynomial in `\mathbb Z[t]`, not necessarily irreducible ring : PolyRing `\mathbb Z(t_k)[t_1, \ldots, t_{k-1}][x, z]`, `h` will be an element of this ring k : Integer index of the parameter `t_k` which will be reconstructed
Returns =======
h : PolyElement reconstructed polynomial in `\mathbb Z(t_k)[t_1, \ldots, t_{k-1}][x, z]` or ``None``
See also ========
_rational_function_reconstruction
"""
h = ring.zero
for monom, coeff in hm.iterterms(): if k == 0: coeffh = _rational_function_reconstruction(coeff, p, m)
if not coeffh: return None
else: coeffh = ring.domain.zero for mon, c in coeff.drop_to_ground(k).iterterms(): ch = _rational_function_reconstruction(c, p, m)
if not ch: return None
coeffh[mon] = ch
h[monom] = coeffh
return h
def _gf_gcdex(f, g, p): r"""
Extended Euclidean Algorithm for two univariate polynomials over `\mathbb Z_p`.
Returns polynomials `s, t` and `h`, such that `h` is the GCD of `f` and `g` and `sf + tg = h \; \mathrm{mod} \, p`.
"""
ring = f.ring s, t, h = gf_gcdex(f.to_dense(), g.to_dense(), p, ring.domain) return ring.from_dense(s), ring.from_dense(t), ring.from_dense(h)
def _trunc(f, minpoly, p): r"""
Compute the reduced representation of a polynomial `f` in `\mathbb Z_p[z] / (\check m_{\alpha}(z))[x]`
Parameters ==========
f : PolyElement polynomial in `\mathbb Z[x, z]` minpoly : PolyElement polynomial `\check m_{\alpha} \in \mathbb Z[z]`, not necessarily irreducible p : Integer prime number, modulus of `\mathbb Z_p`
Returns =======
ftrunc : PolyElement polynomial in `\mathbb Z[x, z]`, reduced modulo `\check m_{\alpha}(z)` and `p`
"""
ring = f.ring minpoly = minpoly.set_ring(ring) p_ = ring.ground_new(p)
return f.trunc_ground(p).rem([minpoly, p_]).trunc_ground(p)
def _euclidean_algorithm(f, g, minpoly, p): r"""
Compute the monic GCD of two univariate polynomials in `\mathbb{Z}_p[z]/(\check m_{\alpha}(z))[x]` with the Euclidean Algorithm.
In general, `\check m_{\alpha}(z)` is not irreducible, so it is possible that some leading coefficient is not invertible modulo `\check m_{\alpha}(z)`. In that case ``None`` is returned.
Parameters ==========
f, g : PolyElement polynomials in `\mathbb Z[x, z]` minpoly : PolyElement polynomial in `\mathbb Z[z]`, not necessarily irreducible p : Integer prime number, modulus of `\mathbb Z_p`
Returns =======
h : PolyElement GCD of `f` and `g` in `\mathbb Z[z, x]` or ``None``, coefficients are in `\left[ -\frac{p-1} 2, \frac{p-1} 2 \right]`
"""
ring = f.ring
f = _trunc(f, minpoly, p) g = _trunc(g, minpoly, p)
while g: rem = f deg = g.degree(0) # degree in x lcinv, _, gcd = _gf_gcdex(ring.dmp_LC(g), minpoly, p)
if not gcd == 1: return None
while True: degrem = rem.degree(0) # degree in x if degrem < deg: break quo = (lcinv * ring.dmp_LC(rem)).set_ring(ring) rem = _trunc(rem - g.mul_monom((degrem - deg, 0))*quo, minpoly, p)
f = g g = rem
lcfinv = _gf_gcdex(ring.dmp_LC(f), minpoly, p)[0].set_ring(ring)
return _trunc(f * lcfinv, minpoly, p)
def _trial_division(f, h, minpoly, p=None): r"""
Check if `h` divides `f` in `\mathbb K[t_1, \ldots, t_k][z]/(m_{\alpha}(z))`, where `\mathbb K` is either `\mathbb Q` or `\mathbb Z_p`.
This algorithm is based on pseudo division and does not use any fractions. By default `\mathbb K` is `\mathbb Q`, if a prime number `p` is given, `\mathbb Z_p` is chosen instead.
Parameters ==========
f, h : PolyElement polynomials in `\mathbb Z[t_1, \ldots, t_k][x, z]` minpoly : PolyElement polynomial `m_{\alpha}(z)` in `\mathbb Z[t_1, \ldots, t_k][z]` p : Integer or None if `p` is given, `\mathbb K` is set to `\mathbb Z_p` instead of `\mathbb Q`, default is ``None``
Returns =======
rem : PolyElement remainder of `\frac f h`
References ==========
.. [1] [Hoeij02]_
"""
ring = f.ring
zxring = ring.clone(symbols=(ring.symbols[1], ring.symbols[0]))
minpoly = minpoly.set_ring(ring)
rem = f
degrem = rem.degree() degh = h.degree() degm = minpoly.degree(1)
lch = _LC(h).set_ring(ring) lcm = minpoly.LC
while rem and degrem >= degh: # polynomial in Z[t_1, ..., t_k][z] lcrem = _LC(rem).set_ring(ring) rem = rem*lch - h.mul_monom((degrem - degh, 0))*lcrem if p: rem = rem.trunc_ground(p) degrem = rem.degree(1)
while rem and degrem >= degm: # polynomial in Z[t_1, ..., t_k][x] lcrem = _LC(rem.set_ring(zxring)).set_ring(ring) rem = rem.mul_ground(lcm) - minpoly.mul_monom((0, degrem - degm))*lcrem if p: rem = rem.trunc_ground(p) degrem = rem.degree(1)
degrem = rem.degree()
return rem
def _evaluate_ground(f, i, a): r"""
Evaluate a polynomial `f` at `a` in the `i`-th variable of the ground domain. """
ring = f.ring.clone(domain=f.ring.domain.ring.drop(i)) fa = ring.zero
for monom, coeff in f.iterterms(): fa[monom] = coeff.evaluate(i, a)
return fa
def _func_field_modgcd_p(f, g, minpoly, p): r"""
Compute the GCD of two polynomials `f` and `g` in `\mathbb Z_p(t_1, \ldots, t_k)[z]/(\check m_\alpha(z))[x]`.
The algorithm reduces the problem step by step by evaluating the polynomials `f` and `g` at `t_k = a` for suitable `a \in \mathbb Z_p` and then calls itself recursively to compute the GCD in `\mathbb Z_p(t_1, \ldots, t_{k-1})[z]/(\check m_\alpha(z))[x]`. If these recursive calls are successful, the GCD over `k` variables is interpolated, otherwise the algorithm returns ``None``. After interpolation, Rational Function Reconstruction is used to obtain the correct coefficients. If this fails, a new evaluation point has to be chosen, otherwise the desired polynomial is obtained by clearing denominators. The result is verified with a fraction free trial division.
Parameters ==========
f, g : PolyElement polynomials in `\mathbb Z[t_1, \ldots, t_k][x, z]` minpoly : PolyElement polynomial in `\mathbb Z[t_1, \ldots, t_k][z]`, not necessarily irreducible p : Integer prime number, modulus of `\mathbb Z_p`
Returns =======
h : PolyElement primitive associate in `\mathbb Z[t_1, \ldots, t_k][x, z]` of the GCD of the polynomials `f` and `g` or ``None``, coefficients are in `\left[ -\frac{p-1} 2, \frac{p-1} 2 \right]`
References ==========
1. [Hoeij04]_
"""
ring = f.ring domain = ring.domain # Z[t_1, ..., t_k]
if isinstance(domain, PolynomialRing): k = domain.ngens else: return _euclidean_algorithm(f, g, minpoly, p)
if k == 1: qdomain = domain.ring.to_field() else: qdomain = domain.ring.drop_to_ground(k - 1) qdomain = qdomain.clone(domain=qdomain.domain.ring.to_field())
qring = ring.clone(domain=qdomain) # = Z(t_k)[t_1, ..., t_{k-1}][x, z]
n = 1 d = 1
# polynomial in Z_p[t_1, ..., t_k][z] gamma = ring.dmp_LC(f) * ring.dmp_LC(g) # polynomial in Z_p[t_1, ..., t_k] delta = minpoly.LC
evalpoints = [] heval = [] LMlist = [] points = list(range(p))
while points: a = random.sample(points, 1)[0] points.remove(a)
if k == 1: test = delta.evaluate(k-1, a) % p == 0 else: test = delta.evaluate(k-1, a).trunc_ground(p) == 0
if test: continue
gammaa = _evaluate_ground(gamma, k-1, a) minpolya = _evaluate_ground(minpoly, k-1, a)
if gammaa.rem([minpolya, gammaa.ring(p)]) == 0: continue
fa = _evaluate_ground(f, k-1, a) ga = _evaluate_ground(g, k-1, a)
# polynomial in Z_p[x, t_1, ..., t_{k-1}, z]/(minpoly) ha = _func_field_modgcd_p(fa, ga, minpolya, p)
if ha is None: d += 1 if d > n: return None continue
if ha == 1: return ha
LM = [ha.degree()] + [0]*(k-1) if k > 1: for monom, coeff in ha.iterterms(): if monom[0] == LM[0] and coeff.LM > tuple(LM[1:]): LM[1:] = coeff.LM
evalpoints_a = [a] heval_a = [ha] if k == 1: m = qring.domain.get_ring().one else: m = qring.domain.domain.get_ring().one
t = m.ring.gens[0]
for b, hb, LMhb in zip(evalpoints, heval, LMlist): if LMhb == LM: evalpoints_a.append(b) heval_a.append(hb) m *= (t - b)
m = m.trunc_ground(p) evalpoints.append(a) heval.append(ha) LMlist.append(LM) n += 1
# polynomial in Z_p[t_1, ..., t_k][x, z] h = _interpolate_multivariate(evalpoints_a, heval_a, ring, k-1, p, ground=True)
# polynomial in Z_p(t_k)[t_1, ..., t_{k-1}][x, z] h = _rational_reconstruction_func_coeffs(h, p, m, qring, k-1)
if h is None: continue
if k == 1: dom = qring.domain.field den = dom.ring.one
for coeff in h.itercoeffs(): den = dom.ring.from_dense(gf_lcm(den.to_dense(), coeff.denom.to_dense(), p, dom.domain))
else: dom = qring.domain.domain.field den = dom.ring.one
for coeff in h.itercoeffs(): for c in coeff.itercoeffs(): den = dom.ring.from_dense(gf_lcm(den.to_dense(), c.denom.to_dense(), p, dom.domain))
den = qring.domain_new(den.trunc_ground(p)) h = ring(h.mul_ground(den).as_expr()).trunc_ground(p)
if not _trial_division(f, h, minpoly, p) and not _trial_division(g, h, minpoly, p): return h
return None
def _integer_rational_reconstruction(c, m, domain): r"""
Reconstruct a rational number `\frac a b` from
.. math::
c = \frac a b \; \mathrm{mod} \, m,
where `c` and `m` are integers.
The algorithm is based on the Euclidean Algorithm. In general, `m` is not a prime number, so it is possible that `b` is not invertible modulo `m`. In that case ``None`` is returned.
Parameters ==========
c : Integer `c = \frac a b \; \mathrm{mod} \, m` m : Integer modulus, not necessarily prime domain : IntegerRing `a, b, c` are elements of ``domain``
Returns =======
frac : Rational either `\frac a b` in `\mathbb Q` or ``None``
References ==========
1. [Wang81]_
"""
if c < 0: c += m
r0, s0 = m, domain.zero r1, s1 = c, domain.one
bound = sqrt(m / 2) # still correct if replaced by ZZ.sqrt(m // 2) ?
while r1 >= bound: quo = r0 // r1 r0, r1 = r1, r0 - quo*r1 s0, s1 = s1, s0 - quo*s1
if abs(s1) >= bound: return None
if s1 < 0: a, b = -r1, -s1 elif s1 > 0: a, b = r1, s1 else: return None
field = domain.get_field()
return field(a) / field(b)
def _rational_reconstruction_int_coeffs(hm, m, ring): r"""
Reconstruct every rational coefficient `c_h` of a polynomial `h` in `\mathbb Q[t_1, \ldots, t_k][x, z]` from the corresponding integer coefficient `c_{h_m}` of a polynomial `h_m` in `\mathbb Z[t_1, \ldots, t_k][x, z]` such that
.. math::
c_{h_m} = c_h \; \mathrm{mod} \, m,
where `m \in \mathbb Z`.
The reconstruction is based on the Euclidean Algorithm. In general, `m` is not a prime number, so it is possible that this fails for some coefficient. In that case ``None`` is returned.
Parameters ==========
hm : PolyElement polynomial in `\mathbb Z[t_1, \ldots, t_k][x, z]` m : Integer modulus, not necessarily prime ring : PolyRing `\mathbb Q[t_1, \ldots, t_k][x, z]`, `h` will be an element of this ring
Returns =======
h : PolyElement reconstructed polynomial in `\mathbb Q[t_1, \ldots, t_k][x, z]` or ``None``
See also ========
_integer_rational_reconstruction
"""
h = ring.zero
if isinstance(ring.domain, PolynomialRing): reconstruction = _rational_reconstruction_int_coeffs domain = ring.domain.ring else: reconstruction = _integer_rational_reconstruction domain = hm.ring.domain
for monom, coeff in hm.iterterms(): coeffh = reconstruction(coeff, m, domain)
if not coeffh: return None
h[monom] = coeffh
return h
def _func_field_modgcd_m(f, g, minpoly): r"""
Compute the GCD of two polynomials in `\mathbb Q(t_1, \ldots, t_k)[z]/(m_{\alpha}(z))[x]` using a modular algorithm.
The algorithm computes the GCD of two polynomials `f` and `g` by calculating the GCD in `\mathbb Z_p(t_1, \ldots, t_k)[z] / (\check m_{\alpha}(z))[x]` for suitable primes `p` and the primitive associate `\check m_{\alpha}(z)` of `m_{\alpha}(z)`. Then the coefficients are reconstructed with the Chinese Remainder Theorem and Rational Reconstruction. To compute the GCD over `\mathbb Z_p(t_1, \ldots, t_k)[z] / (\check m_{\alpha})[x]`, the recursive subroutine ``_func_field_modgcd_p`` is used. To verify the result in `\mathbb Q(t_1, \ldots, t_k)[z] / (m_{\alpha}(z))[x]`, a fraction free trial division is used.
Parameters ==========
f, g : PolyElement polynomials in `\mathbb Z[t_1, \ldots, t_k][x, z]` minpoly : PolyElement irreducible polynomial in `\mathbb Z[t_1, \ldots, t_k][z]`
Returns =======
h : PolyElement the primitive associate in `\mathbb Z[t_1, \ldots, t_k][x, z]` of the GCD of `f` and `g`
Examples ========
>>> from sympy.polys.modulargcd import _func_field_modgcd_m >>> from sympy.polys import ring, ZZ
>>> R, x, z = ring('x, z', ZZ) >>> minpoly = (z**2 - 2).drop(0)
>>> f = x**2 + 2*x*z + 2 >>> g = x + z >>> _func_field_modgcd_m(f, g, minpoly) x + z
>>> D, t = ring('t', ZZ) >>> R, x, z = ring('x, z', D) >>> minpoly = (z**2-3).drop(0)
>>> f = x**2 + (t + 1)*x*z + 3*t >>> g = x*z + 3*t >>> _func_field_modgcd_m(f, g, minpoly) x + t*z
References ==========
1. [Hoeij04]_
See also ========
_func_field_modgcd_p
"""
ring = f.ring domain = ring.domain
if isinstance(domain, PolynomialRing): k = domain.ngens QQdomain = domain.ring.clone(domain=domain.domain.get_field()) QQring = ring.clone(domain=QQdomain) else: k = 0 QQring = ring.clone(domain=ring.domain.get_field())
cf, f = f.primitive() cg, g = g.primitive()
# polynomial in Z[t_1, ..., t_k][z] gamma = ring.dmp_LC(f) * ring.dmp_LC(g) # polynomial in Z[t_1, ..., t_k] delta = minpoly.LC
p = 1 primes = [] hplist = [] LMlist = []
while True: p = nextprime(p)
if gamma.trunc_ground(p) == 0: continue
if k == 0: test = (delta % p == 0) else: test = (delta.trunc_ground(p) == 0)
if test: continue
fp = f.trunc_ground(p) gp = g.trunc_ground(p) minpolyp = minpoly.trunc_ground(p)
hp = _func_field_modgcd_p(fp, gp, minpolyp, p)
if hp is None: continue
if hp == 1: return ring.one
LM = [hp.degree()] + [0]*k if k > 0: for monom, coeff in hp.iterterms(): if monom[0] == LM[0] and coeff.LM > tuple(LM[1:]): LM[1:] = coeff.LM
hm = hp m = p
for q, hq, LMhq in zip(primes, hplist, LMlist): if LMhq == LM: hm = _chinese_remainder_reconstruction_multivariate(hq, hm, q, m) m *= q
primes.append(p) hplist.append(hp) LMlist.append(LM)
hm = _rational_reconstruction_int_coeffs(hm, m, QQring)
if hm is None: continue
if k == 0: h = hm.clear_denoms()[1] else: den = domain.domain.one for coeff in hm.itercoeffs(): den = domain.domain.lcm(den, coeff.clear_denoms()[0]) h = hm.mul_ground(den)
# convert back to Z[t_1, ..., t_k][x, z] from Q[t_1, ..., t_k][x, z] h = h.set_ring(ring) h = h.primitive()[1]
if not (_trial_division(f.mul_ground(cf), h, minpoly) or _trial_division(g.mul_ground(cg), h, minpoly)): return h
def _to_ZZ_poly(f, ring): r"""
Compute an associate of a polynomial `f \in \mathbb Q(\alpha)[x_0, \ldots, x_{n-1}]` in `\mathbb Z[x_1, \ldots, x_{n-1}][z] / (\check m_{\alpha}(z))[x_0]`, where `\check m_{\alpha}(z) \in \mathbb Z[z]` is the primitive associate of the minimal polynomial `m_{\alpha}(z)` of `\alpha` over `\mathbb Q`.
Parameters ==========
f : PolyElement polynomial in `\mathbb Q(\alpha)[x_0, \ldots, x_{n-1}]` ring : PolyRing `\mathbb Z[x_1, \ldots, x_{n-1}][x_0, z]`
Returns =======
f_ : PolyElement associate of `f` in `\mathbb Z[x_1, \ldots, x_{n-1}][x_0, z]`
"""
f_ = ring.zero
if isinstance(ring.domain, PolynomialRing): domain = ring.domain.domain else: domain = ring.domain
den = domain.one
for coeff in f.itercoeffs(): for c in coeff.rep: if c: den = domain.lcm(den, c.denominator)
for monom, coeff in f.iterterms(): coeff = coeff.rep m = ring.domain.one if isinstance(ring.domain, PolynomialRing): m = m.mul_monom(monom[1:]) n = len(coeff)
for i in range(n): if coeff[i]: c = domain(coeff[i] * den) * m
if (monom[0], n-i-1) not in f_: f_[(monom[0], n-i-1)] = c else: f_[(monom[0], n-i-1)] += c
return f_
def _to_ANP_poly(f, ring): r"""
Convert a polynomial `f \in \mathbb Z[x_1, \ldots, x_{n-1}][z]/(\check m_{\alpha}(z))[x_0]` to a polynomial in `\mathbb Q(\alpha)[x_0, \ldots, x_{n-1}]`, where `\check m_{\alpha}(z) \in \mathbb Z[z]` is the primitive associate of the minimal polynomial `m_{\alpha}(z)` of `\alpha` over `\mathbb Q`.
Parameters ==========
f : PolyElement polynomial in `\mathbb Z[x_1, \ldots, x_{n-1}][x_0, z]` ring : PolyRing `\mathbb Q(\alpha)[x_0, \ldots, x_{n-1}]`
Returns =======
f_ : PolyElement polynomial in `\mathbb Q(\alpha)[x_0, \ldots, x_{n-1}]`
"""
domain = ring.domain f_ = ring.zero
if isinstance(f.ring.domain, PolynomialRing): for monom, coeff in f.iterterms(): for mon, coef in coeff.iterterms(): m = (monom[0],) + mon c = domain([domain.domain(coef)] + [0]*monom[1])
if m not in f_: f_[m] = c else: f_[m] += c
else: for monom, coeff in f.iterterms(): m = (monom[0],) c = domain([domain.domain(coeff)] + [0]*monom[1])
if m not in f_: f_[m] = c else: f_[m] += c
return f_
def _minpoly_from_dense(minpoly, ring): r"""
Change representation of the minimal polynomial from ``DMP`` to ``PolyElement`` for a given ring. """
minpoly_ = ring.zero
for monom, coeff in minpoly.terms(): minpoly_[monom] = ring.domain(coeff)
return minpoly_
def _primitive_in_x0(f): r"""
Compute the content in `x_0` and the primitive part of a polynomial `f` in `\mathbb Q(\alpha)[x_0, x_1, \ldots, x_{n-1}] \cong \mathbb Q(\alpha)[x_1, \ldots, x_{n-1}][x_0]`. """
fring = f.ring ring = fring.drop_to_ground(*range(1, fring.ngens)) dom = ring.domain.ring f_ = ring(f.as_expr()) cont = dom.zero
for coeff in f_.itercoeffs(): cont = func_field_modgcd(cont, coeff)[0] if cont == dom.one: return cont, f
return cont, f.quo(cont.set_ring(fring))
# TODO: add support for algebraic function fields def func_field_modgcd(f, g): r"""
Compute the GCD of two polynomials `f` and `g` in `\mathbb Q(\alpha)[x_0, \ldots, x_{n-1}]` using a modular algorithm.
The algorithm first computes the primitive associate `\check m_{\alpha}(z)` of the minimal polynomial `m_{\alpha}` in `\mathbb{Z}[z]` and the primitive associates of `f` and `g` in `\mathbb{Z}[x_1, \ldots, x_{n-1}][z]/(\check m_{\alpha})[x_0]`. Then it computes the GCD in `\mathbb Q(x_1, \ldots, x_{n-1})[z]/(m_{\alpha}(z))[x_0]`. This is done by calculating the GCD in `\mathbb{Z}_p(x_1, \ldots, x_{n-1})[z]/(\check m_{\alpha}(z))[x_0]` for suitable primes `p` and then reconstructing the coefficients with the Chinese Remainder Theorem and Rational Reconstuction. The GCD over `\mathbb{Z}_p(x_1, \ldots, x_{n-1})[z]/(\check m_{\alpha}(z))[x_0]` is computed with a recursive subroutine, which evaluates the polynomials at `x_{n-1} = a` for suitable evaluation points `a \in \mathbb Z_p` and then calls itself recursively until the ground domain does no longer contain any parameters. For `\mathbb{Z}_p[z]/(\check m_{\alpha}(z))[x_0]` the Euclidean Algorithm is used. The results of those recursive calls are then interpolated and Rational Function Reconstruction is used to obtain the correct coefficients. The results, both in `\mathbb Q(x_1, \ldots, x_{n-1})[z]/(m_{\alpha}(z))[x_0]` and `\mathbb{Z}_p(x_1, \ldots, x_{n-1})[z]/(\check m_{\alpha}(z))[x_0]`, are verified by a fraction free trial division.
Apart from the above GCD computation some GCDs in `\mathbb Q(\alpha)[x_1, \ldots, x_{n-1}]` have to be calculated, because treating the polynomials as univariate ones can result in a spurious content of the GCD. For this ``func_field_modgcd`` is called recursively.
Parameters ==========
f, g : PolyElement polynomials in `\mathbb Q(\alpha)[x_0, \ldots, x_{n-1}]`
Returns =======
h : PolyElement monic GCD of the polynomials `f` and `g` cff : PolyElement cofactor of `f`, i.e. `\frac f h` cfg : PolyElement cofactor of `g`, i.e. `\frac g h`
Examples ========
>>> from sympy.polys.modulargcd import func_field_modgcd >>> from sympy.polys import AlgebraicField, QQ, ring >>> from sympy import sqrt
>>> A = AlgebraicField(QQ, sqrt(2)) >>> R, x = ring('x', A)
>>> f = x**2 - 2 >>> g = x + sqrt(2)
>>> h, cff, cfg = func_field_modgcd(f, g)
>>> h == x + sqrt(2) True >>> cff * h == f True >>> cfg * h == g True
>>> R, x, y = ring('x, y', A)
>>> f = x**2 + 2*sqrt(2)*x*y + 2*y**2 >>> g = x + sqrt(2)*y
>>> h, cff, cfg = func_field_modgcd(f, g)
>>> h == x + sqrt(2)*y True >>> cff * h == f True >>> cfg * h == g True
>>> f = x + sqrt(2)*y >>> g = x + y
>>> h, cff, cfg = func_field_modgcd(f, g)
>>> h == R.one True >>> cff * h == f True >>> cfg * h == g True
References ==========
1. [Hoeij04]_
"""
ring = f.ring domain = ring.domain n = ring.ngens
assert ring == g.ring and domain.is_Algebraic
result = _trivial_gcd(f, g) if result is not None: return result
z = Dummy('z')
ZZring = ring.clone(symbols=ring.symbols + (z,), domain=domain.domain.get_ring())
if n == 1: f_ = _to_ZZ_poly(f, ZZring) g_ = _to_ZZ_poly(g, ZZring) minpoly = ZZring.drop(0).from_dense(domain.mod.rep)
h = _func_field_modgcd_m(f_, g_, minpoly) h = _to_ANP_poly(h, ring)
else: # contx0f in Q(a)[x_1, ..., x_{n-1}], f in Q(a)[x_0, ..., x_{n-1}] contx0f, f = _primitive_in_x0(f) contx0g, g = _primitive_in_x0(g) contx0h = func_field_modgcd(contx0f, contx0g)[0]
ZZring_ = ZZring.drop_to_ground(*range(1, n))
f_ = _to_ZZ_poly(f, ZZring_) g_ = _to_ZZ_poly(g, ZZring_) minpoly = _minpoly_from_dense(domain.mod, ZZring_.drop(0))
h = _func_field_modgcd_m(f_, g_, minpoly) h = _to_ANP_poly(h, ring)
contx0h_, h = _primitive_in_x0(h) h *= contx0h.set_ring(ring) f *= contx0f.set_ring(ring) g *= contx0g.set_ring(ring)
h = h.quo_ground(h.LC)
return h, f.quo(h), g.quo(h)
|