|
|
"""Tools and arithmetics for monomials of distributed polynomials. """
from itertools import combinations_with_replacement, product from textwrap import dedent
from sympy.core import Mul, S, Tuple, sympify from sympy.polys.polyerrors import ExactQuotientFailed from sympy.polys.polyutils import PicklableWithSlots, dict_from_expr from sympy.utilities import public from sympy.utilities.iterables import is_sequence, iterable
@public def itermonomials(variables, max_degrees, min_degrees=None): r"""
``max_degrees`` and ``min_degrees`` are either both integers or both lists. Unless otherwise specified, ``min_degrees`` is either ``0`` or ``[0, ..., 0]``.
A generator of all monomials ``monom`` is returned, such that either ``min_degree <= total_degree(monom) <= max_degree``, or ``min_degrees[i] <= degree_list(monom)[i] <= max_degrees[i]``, for all ``i``.
Case I. ``max_degrees`` and ``min_degrees`` are both integers =============================================================
Given a set of variables $V$ and a min_degree $N$ and a max_degree $M$ generate a set of monomials of degree less than or equal to $N$ and greater than or equal to $M$. The total number of monomials in commutative variables is huge and is given by the following formula if $M = 0$:
.. math:: \frac{(\#V + N)!}{\#V! N!}
For example if we would like to generate a dense polynomial of a total degree $N = 50$ and $M = 0$, which is the worst case, in 5 variables, assuming that exponents and all of coefficients are 32-bit long and stored in an array we would need almost 80 GiB of memory! Fortunately most polynomials, that we will encounter, are sparse.
Consider monomials in commutative variables $x$ and $y$ and non-commutative variables $a$ and $b$::
>>> from sympy import symbols >>> from sympy.polys.monomials import itermonomials >>> from sympy.polys.orderings import monomial_key >>> from sympy.abc import x, y
>>> sorted(itermonomials([x, y], 2), key=monomial_key('grlex', [y, x])) [1, x, y, x**2, x*y, y**2]
>>> sorted(itermonomials([x, y], 3), key=monomial_key('grlex', [y, x])) [1, x, y, x**2, x*y, y**2, x**3, x**2*y, x*y**2, y**3]
>>> a, b = symbols('a, b', commutative=False) >>> set(itermonomials([a, b, x], 2)) {1, a, a**2, b, b**2, x, x**2, a*b, b*a, x*a, x*b}
>>> sorted(itermonomials([x, y], 2, 1), key=monomial_key('grlex', [y, x])) [x, y, x**2, x*y, y**2]
Case II. ``max_degrees`` and ``min_degrees`` are both lists ===========================================================
If ``max_degrees = [d_1, ..., d_n]`` and ``min_degrees = [e_1, ..., e_n]``, the number of monomials generated is:
.. math:: (d_1 - e_1 + 1) (d_2 - e_2 + 1) \cdots (d_n - e_n + 1)
Let us generate all monomials ``monom`` in variables $x$ and $y$ such that ``[1, 2][i] <= degree_list(monom)[i] <= [2, 4][i]``, ``i = 0, 1`` ::
>>> from sympy import symbols >>> from sympy.polys.monomials import itermonomials >>> from sympy.polys.orderings import monomial_key >>> from sympy.abc import x, y
>>> sorted(itermonomials([x, y], [2, 4], [1, 2]), reverse=True, key=monomial_key('lex', [x, y])) [x**2*y**4, x**2*y**3, x**2*y**2, x*y**4, x*y**3, x*y**2] """
n = len(variables) if is_sequence(max_degrees): if len(max_degrees) != n: raise ValueError('Argument sizes do not match') if min_degrees is None: min_degrees = [0]*n elif not is_sequence(min_degrees): raise ValueError('min_degrees is not a list') else: if len(min_degrees) != n: raise ValueError('Argument sizes do not match') if any(i < 0 for i in min_degrees): raise ValueError("min_degrees cannot contain negative numbers") total_degree = False else: max_degree = max_degrees if max_degree < 0: raise ValueError("max_degrees cannot be negative") if min_degrees is None: min_degree = 0 else: if min_degrees < 0: raise ValueError("min_degrees cannot be negative") min_degree = min_degrees total_degree = True if total_degree: if min_degree > max_degree: return if not variables or max_degree == 0: yield S.One return # Force to list in case of passed tuple or other incompatible collection variables = list(variables) + [S.One] if all(variable.is_commutative for variable in variables): monomials_list_comm = [] for item in combinations_with_replacement(variables, max_degree): powers = dict() for variable in variables: powers[variable] = 0 for variable in item: if variable != 1: powers[variable] += 1 if sum(powers.values()) >= min_degree: monomials_list_comm.append(Mul(*item)) yield from set(monomials_list_comm) else: monomials_list_non_comm = [] for item in product(variables, repeat=max_degree): powers = dict() for variable in variables: powers[variable] = 0 for variable in item: if variable != 1: powers[variable] += 1 if sum(powers.values()) >= min_degree: monomials_list_non_comm.append(Mul(*item)) yield from set(monomials_list_non_comm) else: if any(min_degrees[i] > max_degrees[i] for i in range(n)): raise ValueError('min_degrees[i] must be <= max_degrees[i] for all i') power_lists = [] for var, min_d, max_d in zip(variables, min_degrees, max_degrees): power_lists.append([var**i for i in range(min_d, max_d + 1)]) for powers in product(*power_lists): yield Mul(*powers)
def monomial_count(V, N): r"""
Computes the number of monomials.
The number of monomials is given by the following formula:
.. math::
\frac{(\#V + N)!}{\#V! N!}
where `N` is a total degree and `V` is a set of variables.
Examples ========
>>> from sympy.polys.monomials import itermonomials, monomial_count >>> from sympy.polys.orderings import monomial_key >>> from sympy.abc import x, y
>>> monomial_count(2, 2) 6
>>> M = list(itermonomials([x, y], 2))
>>> sorted(M, key=monomial_key('grlex', [y, x])) [1, x, y, x**2, x*y, y**2] >>> len(M) 6
"""
from sympy.functions.combinatorial.factorials import factorial return factorial(V + N) / factorial(V) / factorial(N)
def monomial_mul(A, B): """
Multiplication of tuples representing monomials.
Examples ========
Lets multiply `x**3*y**4*z` with `x*y**2`::
>>> from sympy.polys.monomials import monomial_mul
>>> monomial_mul((3, 4, 1), (1, 2, 0)) (4, 6, 1)
which gives `x**4*y**5*z`.
"""
return tuple([ a + b for a, b in zip(A, B) ])
def monomial_div(A, B): """
Division of tuples representing monomials.
Examples ========
Lets divide `x**3*y**4*z` by `x*y**2`::
>>> from sympy.polys.monomials import monomial_div
>>> monomial_div((3, 4, 1), (1, 2, 0)) (2, 2, 1)
which gives `x**2*y**2*z`. However::
>>> monomial_div((3, 4, 1), (1, 2, 2)) is None True
`x*y**2*z**2` does not divide `x**3*y**4*z`.
"""
C = monomial_ldiv(A, B)
if all(c >= 0 for c in C): return tuple(C) else: return None
def monomial_ldiv(A, B): """
Division of tuples representing monomials.
Examples ========
Lets divide `x**3*y**4*z` by `x*y**2`::
>>> from sympy.polys.monomials import monomial_ldiv
>>> monomial_ldiv((3, 4, 1), (1, 2, 0)) (2, 2, 1)
which gives `x**2*y**2*z`.
>>> monomial_ldiv((3, 4, 1), (1, 2, 2)) (2, 2, -1)
which gives `x**2*y**2*z**-1`.
"""
return tuple([ a - b for a, b in zip(A, B) ])
def monomial_pow(A, n): """Return the n-th pow of the monomial. """ return tuple([ a*n for a in A ])
def monomial_gcd(A, B): """
Greatest common divisor of tuples representing monomials.
Examples ========
Lets compute GCD of `x*y**4*z` and `x**3*y**2`::
>>> from sympy.polys.monomials import monomial_gcd
>>> monomial_gcd((1, 4, 1), (3, 2, 0)) (1, 2, 0)
which gives `x*y**2`.
"""
return tuple([ min(a, b) for a, b in zip(A, B) ])
def monomial_lcm(A, B): """
Least common multiple of tuples representing monomials.
Examples ========
Lets compute LCM of `x*y**4*z` and `x**3*y**2`::
>>> from sympy.polys.monomials import monomial_lcm
>>> monomial_lcm((1, 4, 1), (3, 2, 0)) (3, 4, 1)
which gives `x**3*y**4*z`.
"""
return tuple([ max(a, b) for a, b in zip(A, B) ])
def monomial_divides(A, B): """
Does there exist a monomial X such that XA == B?
Examples ========
>>> from sympy.polys.monomials import monomial_divides >>> monomial_divides((1, 2), (3, 4)) True >>> monomial_divides((1, 2), (0, 2)) False """
return all(a <= b for a, b in zip(A, B))
def monomial_max(*monoms): """
Returns maximal degree for each variable in a set of monomials.
Examples ========
Consider monomials `x**3*y**4*z**5`, `y**5*z` and `x**6*y**3*z**9`. We wish to find out what is the maximal degree for each of `x`, `y` and `z` variables::
>>> from sympy.polys.monomials import monomial_max
>>> monomial_max((3,4,5), (0,5,1), (6,3,9)) (6, 5, 9)
"""
M = list(monoms[0])
for N in monoms[1:]: for i, n in enumerate(N): M[i] = max(M[i], n)
return tuple(M)
def monomial_min(*monoms): """
Returns minimal degree for each variable in a set of monomials.
Examples ========
Consider monomials `x**3*y**4*z**5`, `y**5*z` and `x**6*y**3*z**9`. We wish to find out what is the minimal degree for each of `x`, `y` and `z` variables::
>>> from sympy.polys.monomials import monomial_min
>>> monomial_min((3,4,5), (0,5,1), (6,3,9)) (0, 3, 1)
"""
M = list(monoms[0])
for N in monoms[1:]: for i, n in enumerate(N): M[i] = min(M[i], n)
return tuple(M)
def monomial_deg(M): """
Returns the total degree of a monomial.
Examples ========
The total degree of `xy^2` is 3:
>>> from sympy.polys.monomials import monomial_deg >>> monomial_deg((1, 2)) 3 """
return sum(M)
def term_div(a, b, domain): """Division of two terms in over a ring/field. """ a_lm, a_lc = a b_lm, b_lc = b
monom = monomial_div(a_lm, b_lm)
if domain.is_Field: if monom is not None: return monom, domain.quo(a_lc, b_lc) else: return None else: if not (monom is None or a_lc % b_lc): return monom, domain.quo(a_lc, b_lc) else: return None
class MonomialOps: """Code generator of fast monomial arithmetic functions. """
def __init__(self, ngens): self.ngens = ngens
def _build(self, code, name): ns = {} exec(code, ns) return ns[name]
def _vars(self, name): return [ "%s%s" % (name, i) for i in range(self.ngens) ]
def mul(self): name = "monomial_mul" template = dedent("""\
def %(name)s(A, B): (%(A)s,) = A (%(B)s,) = B return (%(AB)s,) """)
A = self._vars("a") B = self._vars("b") AB = [ "%s + %s" % (a, b) for a, b in zip(A, B) ] code = template % dict(name=name, A=", ".join(A), B=", ".join(B), AB=", ".join(AB)) return self._build(code, name)
def pow(self): name = "monomial_pow" template = dedent("""\
def %(name)s(A, k): (%(A)s,) = A return (%(Ak)s,) """)
A = self._vars("a") Ak = [ "%s*k" % a for a in A ] code = template % dict(name=name, A=", ".join(A), Ak=", ".join(Ak)) return self._build(code, name)
def mulpow(self): name = "monomial_mulpow" template = dedent("""\
def %(name)s(A, B, k): (%(A)s,) = A (%(B)s,) = B return (%(ABk)s,) """)
A = self._vars("a") B = self._vars("b") ABk = [ "%s + %s*k" % (a, b) for a, b in zip(A, B) ] code = template % dict(name=name, A=", ".join(A), B=", ".join(B), ABk=", ".join(ABk)) return self._build(code, name)
def ldiv(self): name = "monomial_ldiv" template = dedent("""\
def %(name)s(A, B): (%(A)s,) = A (%(B)s,) = B return (%(AB)s,) """)
A = self._vars("a") B = self._vars("b") AB = [ "%s - %s" % (a, b) for a, b in zip(A, B) ] code = template % dict(name=name, A=", ".join(A), B=", ".join(B), AB=", ".join(AB)) return self._build(code, name)
def div(self): name = "monomial_div" template = dedent("""\
def %(name)s(A, B): (%(A)s,) = A (%(B)s,) = B %(RAB)s return (%(R)s,) """)
A = self._vars("a") B = self._vars("b") RAB = [ "r%(i)s = a%(i)s - b%(i)s\n if r%(i)s < 0: return None" % dict(i=i) for i in range(self.ngens) ] R = self._vars("r") code = template % dict(name=name, A=", ".join(A), B=", ".join(B), RAB="\n ".join(RAB), R=", ".join(R)) return self._build(code, name)
def lcm(self): name = "monomial_lcm" template = dedent("""\
def %(name)s(A, B): (%(A)s,) = A (%(B)s,) = B return (%(AB)s,) """)
A = self._vars("a") B = self._vars("b") AB = [ "%s if %s >= %s else %s" % (a, a, b, b) for a, b in zip(A, B) ] code = template % dict(name=name, A=", ".join(A), B=", ".join(B), AB=", ".join(AB)) return self._build(code, name)
def gcd(self): name = "monomial_gcd" template = dedent("""\
def %(name)s(A, B): (%(A)s,) = A (%(B)s,) = B return (%(AB)s,) """)
A = self._vars("a") B = self._vars("b") AB = [ "%s if %s <= %s else %s" % (a, a, b, b) for a, b in zip(A, B) ] code = template % dict(name=name, A=", ".join(A), B=", ".join(B), AB=", ".join(AB)) return self._build(code, name)
@public class Monomial(PicklableWithSlots): """Class representing a monomial, i.e. a product of powers. """
__slots__ = ('exponents', 'gens')
def __init__(self, monom, gens=None): if not iterable(monom): rep, gens = dict_from_expr(sympify(monom), gens=gens) if len(rep) == 1 and list(rep.values())[0] == 1: monom = list(rep.keys())[0] else: raise ValueError("Expected a monomial got {}".format(monom))
self.exponents = tuple(map(int, monom)) self.gens = gens
def rebuild(self, exponents, gens=None): return self.__class__(exponents, gens or self.gens)
def __len__(self): return len(self.exponents)
def __iter__(self): return iter(self.exponents)
def __getitem__(self, item): return self.exponents[item]
def __hash__(self): return hash((self.__class__.__name__, self.exponents, self.gens))
def __str__(self): if self.gens: return "*".join([ "%s**%s" % (gen, exp) for gen, exp in zip(self.gens, self.exponents) ]) else: return "%s(%s)" % (self.__class__.__name__, self.exponents)
def as_expr(self, *gens): """Convert a monomial instance to a SymPy expression. """ gens = gens or self.gens
if not gens: raise ValueError( "Cannot convert %s to an expression without generators" % self)
return Mul(*[ gen**exp for gen, exp in zip(gens, self.exponents) ])
def __eq__(self, other): if isinstance(other, Monomial): exponents = other.exponents elif isinstance(other, (tuple, Tuple)): exponents = other else: return False
return self.exponents == exponents
def __ne__(self, other): return not self == other
def __mul__(self, other): if isinstance(other, Monomial): exponents = other.exponents elif isinstance(other, (tuple, Tuple)): exponents = other else: raise NotImplementedError
return self.rebuild(monomial_mul(self.exponents, exponents))
def __truediv__(self, other): if isinstance(other, Monomial): exponents = other.exponents elif isinstance(other, (tuple, Tuple)): exponents = other else: raise NotImplementedError
result = monomial_div(self.exponents, exponents)
if result is not None: return self.rebuild(result) else: raise ExactQuotientFailed(self, Monomial(other))
__floordiv__ = __truediv__
def __pow__(self, other): n = int(other)
if not n: return self.rebuild([0]*len(self)) elif n > 0: exponents = self.exponents
for i in range(1, n): exponents = monomial_mul(exponents, self.exponents)
return self.rebuild(exponents) else: raise ValueError("a non-negative integer expected, got %s" % other)
def gcd(self, other): """Greatest common divisor of monomials. """ if isinstance(other, Monomial): exponents = other.exponents elif isinstance(other, (tuple, Tuple)): exponents = other else: raise TypeError( "an instance of Monomial class expected, got %s" % other)
return self.rebuild(monomial_gcd(self.exponents, exponents))
def lcm(self, other): """Least common multiple of monomials. """ if isinstance(other, Monomial): exponents = other.exponents elif isinstance(other, (tuple, Tuple)): exponents = other else: raise TypeError( "an instance of Monomial class expected, got %s" % other)
return self.rebuild(monomial_lcm(self.exponents, exponents))
|