|
|
"""High-level polynomials manipulation functions. """
from sympy.core import S, Basic, Add, Mul, symbols, Dummy from sympy.polys.polyerrors import ( PolificationFailed, ComputationFailed, MultivariatePolynomialError, OptionError) from sympy.polys.polyoptions import allowed_flags from sympy.polys.polytools import ( poly_from_expr, parallel_poly_from_expr, Poly) from sympy.polys.specialpolys import ( symmetric_poly, interpolating_poly) from sympy.utilities import numbered_symbols, take, public
@public def symmetrize(F, *gens, **args): r"""
Rewrite a polynomial in terms of elementary symmetric polynomials.
A symmetric polynomial is a multivariate polynomial that remains invariant under any variable permutation, i.e., if `f = f(x_1, x_2, \dots, x_n)`, then `f = f(x_{i_1}, x_{i_2}, \dots, x_{i_n})`, where `(i_1, i_2, \dots, i_n)` is a permutation of `(1, 2, \dots, n)` (an element of the group `S_n`).
Returns a tuple of symmetric polynomials ``(f1, f2, ..., fn)`` such that ``f = f1 + f2 + ... + fn``.
Examples ========
>>> from sympy.polys.polyfuncs import symmetrize >>> from sympy.abc import x, y
>>> symmetrize(x**2 + y**2) (-2*x*y + (x + y)**2, 0)
>>> symmetrize(x**2 + y**2, formal=True) (s1**2 - 2*s2, 0, [(s1, x + y), (s2, x*y)])
>>> symmetrize(x**2 - y**2) (-2*x*y + (x + y)**2, -2*y**2)
>>> symmetrize(x**2 - y**2, formal=True) (s1**2 - 2*s2, -2*y**2, [(s1, x + y), (s2, x*y)])
"""
allowed_flags(args, ['formal', 'symbols'])
iterable = True
if not hasattr(F, '__iter__'): iterable = False F = [F]
try: F, opt = parallel_poly_from_expr(F, *gens, **args) except PolificationFailed as exc: result = []
for expr in exc.exprs: if expr.is_Number: result.append((expr, S.Zero)) else: raise ComputationFailed('symmetrize', len(F), exc)
if not iterable: result, = result
if not exc.opt.formal: return result else: if iterable: return result, [] else: return result + ([],)
polys, symbols = [], opt.symbols gens, dom = opt.gens, opt.domain
for i in range(len(gens)): poly = symmetric_poly(i + 1, gens, polys=True) polys.append((next(symbols), poly.set_domain(dom)))
indices = list(range(len(gens) - 1)) weights = list(range(len(gens), 0, -1))
result = []
for f in F: symmetric = []
if not f.is_homogeneous: symmetric.append(f.TC()) f -= f.TC().as_poly(f.gens)
while f: _height, _monom, _coeff = -1, None, None
for i, (monom, coeff) in enumerate(f.terms()): if all(monom[i] >= monom[i + 1] for i in indices): height = max([n*m for n, m in zip(weights, monom)])
if height > _height: _height, _monom, _coeff = height, monom, coeff
if _height != -1: monom, coeff = _monom, _coeff else: break
exponents = []
for m1, m2 in zip(monom, monom[1:] + (0,)): exponents.append(m1 - m2)
term = [s**n for (s, _), n in zip(polys, exponents)] poly = [p**n for (_, p), n in zip(polys, exponents)]
symmetric.append(Mul(coeff, *term)) product = poly[0].mul(coeff)
for p in poly[1:]: product = product.mul(p)
f -= product
result.append((Add(*symmetric), f.as_expr()))
polys = [(s, p.as_expr()) for s, p in polys]
if not opt.formal: for i, (sym, non_sym) in enumerate(result): result[i] = (sym.subs(polys), non_sym)
if not iterable: result, = result
if not opt.formal: return result else: if iterable: return result, polys else: return result + (polys,)
@public def horner(f, *gens, **args): """
Rewrite a polynomial in Horner form.
Among other applications, evaluation of a polynomial at a point is optimal when it is applied using the Horner scheme ([1]).
Examples ========
>>> from sympy.polys.polyfuncs import horner >>> from sympy.abc import x, y, a, b, c, d, e
>>> horner(9*x**4 + 8*x**3 + 7*x**2 + 6*x + 5) x*(x*(x*(9*x + 8) + 7) + 6) + 5
>>> horner(a*x**4 + b*x**3 + c*x**2 + d*x + e) e + x*(d + x*(c + x*(a*x + b)))
>>> f = 4*x**2*y**2 + 2*x**2*y + 2*x*y**2 + x*y
>>> horner(f, wrt=x) x*(x*y*(4*y + 2) + y*(2*y + 1))
>>> horner(f, wrt=y) y*(x*y*(4*x + 2) + x*(2*x + 1))
References ========== [1] - https://en.wikipedia.org/wiki/Horner_scheme
"""
allowed_flags(args, [])
try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: return exc.expr
form, gen = S.Zero, F.gen
if F.is_univariate: for coeff in F.all_coeffs(): form = form*gen + coeff else: F, gens = Poly(F, gen), gens[1:]
for coeff in F.all_coeffs(): form = form*gen + horner(coeff, *gens, **args)
return form
@public def interpolate(data, x): """
Construct an interpolating polynomial for the data points evaluated at point x (which can be symbolic or numeric).
Examples ========
>>> from sympy.polys.polyfuncs import interpolate >>> from sympy.abc import a, b, x
A list is interpreted as though it were paired with a range starting from 1:
>>> interpolate([1, 4, 9, 16], x) x**2
This can be made explicit by giving a list of coordinates:
>>> interpolate([(1, 1), (2, 4), (3, 9)], x) x**2
The (x, y) coordinates can also be given as keys and values of a dictionary (and the points need not be equispaced):
>>> interpolate([(-1, 2), (1, 2), (2, 5)], x) x**2 + 1 >>> interpolate({-1: 2, 1: 2, 2: 5}, x) x**2 + 1
If the interpolation is going to be used only once then the value of interest can be passed instead of passing a symbol:
>>> interpolate([1, 4, 9], 5) 25
Symbolic coordinates are also supported:
>>> [(i,interpolate((a, b), i)) for i in range(1, 4)] [(1, a), (2, b), (3, -a + 2*b)] """
n = len(data)
if isinstance(data, dict): if x in data: return S(data[x]) X, Y = list(zip(*data.items())) else: if isinstance(data[0], tuple): X, Y = list(zip(*data)) if x in X: return S(Y[X.index(x)]) else: if x in range(1, n + 1): return S(data[x - 1]) Y = list(data) X = list(range(1, n + 1))
try: return interpolating_poly(n, x, X, Y).expand() except ValueError: d = Dummy() return interpolating_poly(n, d, X, Y).expand().subs(d, x)
@public def rational_interpolate(data, degnum, X=symbols('x')): """
Returns a rational interpolation, where the data points are element of any integral domain.
The first argument contains the data (as a list of coordinates). The ``degnum`` argument is the degree in the numerator of the rational function. Setting it too high will decrease the maximal degree in the denominator for the same amount of data.
Examples ========
>>> from sympy.polys.polyfuncs import rational_interpolate
>>> data = [(1, -210), (2, -35), (3, 105), (4, 231), (5, 350), (6, 465)] >>> rational_interpolate(data, 2) (105*x**2 - 525)/(x + 1)
Values do not need to be integers:
>>> from sympy import sympify >>> x = [1, 2, 3, 4, 5, 6] >>> y = sympify("[-1, 0, 2, 22/5, 7, 68/7]") >>> rational_interpolate(zip(x, y), 2) (3*x**2 - 7*x + 2)/(x + 1)
The symbol for the variable can be changed if needed: >>> from sympy import symbols >>> z = symbols('z') >>> rational_interpolate(data, 2, X=z) (105*z**2 - 525)/(z + 1)
References ==========
.. [1] Algorithm is adapted from: http://axiom-wiki.newsynthesis.org/RationalInterpolation
"""
from sympy.matrices.dense import ones
xdata, ydata = list(zip(*data))
k = len(xdata) - degnum - 1 if k < 0: raise OptionError("Too few values for the required degree.") c = ones(degnum + k + 1, degnum + k + 2) for j in range(max(degnum, k)): for i in range(degnum + k + 1): c[i, j + 1] = c[i, j]*xdata[i] for j in range(k + 1): for i in range(degnum + k + 1): c[i, degnum + k + 1 - j] = -c[i, k - j]*ydata[i] r = c.nullspace()[0] return (sum(r[i] * X**i for i in range(degnum + 1)) / sum(r[i + degnum + 1] * X**i for i in range(k + 1)))
@public def viete(f, roots=None, *gens, **args): """
Generate Viete's formulas for ``f``.
Examples ========
>>> from sympy.polys.polyfuncs import viete >>> from sympy import symbols
>>> x, a, b, c, r1, r2 = symbols('x,a:c,r1:3')
>>> viete(a*x**2 + b*x + c, [r1, r2], x) [(r1 + r2, -b/a), (r1*r2, c/a)]
"""
allowed_flags(args, [])
if isinstance(roots, Basic): gens, roots = (roots,) + gens, None
try: f, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('viete', 1, exc)
if f.is_multivariate: raise MultivariatePolynomialError( "multivariate polynomials are not allowed")
n = f.degree()
if n < 1: raise ValueError( "Cannot derive Viete's formulas for a constant polynomial")
if roots is None: roots = numbered_symbols('r', start=1)
roots = take(roots, n)
if n != len(roots): raise ValueError("required %s roots, got %s" % (n, len(roots)))
lc, coeffs = f.LC(), f.all_coeffs() result, sign = [], -1
for i, coeff in enumerate(coeffs[1:]): poly = symmetric_poly(i + 1, roots) coeff = sign*(coeff/lc) result.append((poly, coeff)) sign = -sign
return result
|