|
|
from sympy.core.expr import Expr from sympy.core.symbol import Dummy from sympy.core.sympify import _sympify
from sympy.polys.polyerrors import CoercionFailed from sympy.polys.polytools import Poly, parallel_poly_from_expr from sympy.polys.domains import QQ
from sympy.polys.matrices import DomainMatrix from sympy.polys.matrices.domainscalar import DomainScalar
class MutablePolyDenseMatrix: """
A mutable matrix of objects from poly module or to operate with them.
Examples ========
>>> from sympy.polys.polymatrix import PolyMatrix >>> from sympy import Symbol, Poly >>> x = Symbol('x') >>> pm1 = PolyMatrix([[Poly(x**2, x), Poly(-x, x)], [Poly(x**3, x), Poly(-1 + x, x)]]) >>> v1 = PolyMatrix([[1, 0], [-1, 0]], x) >>> pm1*v1 PolyMatrix([ [ x**2 + x, 0], [x**3 - x + 1, 0]], ring=QQ[x])
>>> pm1.ring ZZ[x]
>>> v1*pm1 PolyMatrix([ [ x**2, -x], [-x**2, x]], ring=QQ[x])
>>> pm2 = PolyMatrix([[Poly(x**2, x, domain='QQ'), Poly(0, x, domain='QQ'), Poly(1, x, domain='QQ'), \ Poly(x**3, x, domain='QQ'), Poly(0, x, domain='QQ'), Poly(-x**3, x, domain='QQ')]]) >>> v2 = PolyMatrix([1, 0, 0, 0, 0, 0], x) >>> v2.ring QQ[x] >>> pm2*v2 PolyMatrix([[x**2]], ring=QQ[x])
"""
def __new__(cls, *args, ring=None):
if not args: # PolyMatrix(ring=QQ[x]) if ring is None: raise TypeError("The ring needs to be specified for an empty PolyMatrix") rows, cols, items, gens = 0, 0, [], () elif isinstance(args[0], list): elements, gens = args[0], args[1:] if not elements: # PolyMatrix([]) rows, cols, items = 0, 0, [] elif isinstance(elements[0], (list, tuple)): # PolyMatrix([[1, 2]], x) rows, cols = len(elements), len(elements[0]) items = [e for row in elements for e in row] else: # PolyMatrix([1, 2], x) rows, cols = len(elements), 1 items = elements elif [type(a) for a in args[:3]] == [int, int, list]: # PolyMatrix(2, 2, [1, 2, 3, 4], x) rows, cols, items, gens = args[0], args[1], args[2], args[3:] elif [type(a) for a in args[:3]] == [int, int, type(lambda: 0)]: # PolyMatrix(2, 2, lambda i, j: i+j, x) rows, cols, func, gens = args[0], args[1], args[2], args[3:] items = [func(i, j) for i in range(rows) for j in range(cols)] else: raise TypeError("Invalid arguments")
# PolyMatrix([[1]], x, y) vs PolyMatrix([[1]], (x, y)) if len(gens) == 1 and isinstance(gens[0], tuple): gens = gens[0] # gens is now a tuple (x, y)
return cls.from_list(rows, cols, items, gens, ring)
@classmethod def from_list(cls, rows, cols, items, gens, ring):
# items can be Expr, Poly, or a mix of Expr and Poly items = [_sympify(item) for item in items] if items and all(isinstance(item, Poly) for item in items): polys = True else: polys = False
# Identify the ring for the polys if ring is not None: # Parse a domain string like 'QQ[x]' if isinstance(ring, str): ring = Poly(0, Dummy(), domain=ring).domain elif polys: p = items[0] for p2 in items[1:]: p, _ = p.unify(p2) ring = p.domain[p.gens] else: items, info = parallel_poly_from_expr(items, gens, field=True) ring = info['domain'][info['gens']] polys = True
# Efficiently convert when all elements are Poly if polys: p_ring = Poly(0, ring.symbols, domain=ring.domain) to_ring = ring.ring.from_list convert_poly = lambda p: to_ring(p.unify(p_ring)[0].rep.rep) elements = [convert_poly(p) for p in items] else: convert_expr = ring.from_sympy elements = [convert_expr(e.as_expr()) for e in items]
# Convert to domain elements and construct DomainMatrix elements_lol = [[elements[i*cols + j] for j in range(cols)] for i in range(rows)] dm = DomainMatrix(elements_lol, (rows, cols), ring) return cls.from_dm(dm)
@classmethod def from_dm(cls, dm): obj = super().__new__(cls) dm = dm.to_sparse() R = dm.domain obj._dm = dm obj.ring = R obj.domain = R.domain obj.gens = R.symbols return obj
def to_Matrix(self): return self._dm.to_Matrix()
@classmethod def from_Matrix(cls, other, *gens, ring=None): return cls(*other.shape, other.flat(), *gens, ring=ring)
def set_gens(self, gens): return self.from_Matrix(self.to_Matrix(), gens)
def __repr__(self): if self.rows * self.cols: return 'Poly' + repr(self.to_Matrix())[:-1] + f', ring={self.ring})' else: return f'PolyMatrix({self.rows}, {self.cols}, [], ring={self.ring})'
@property def shape(self): return self._dm.shape
@property def rows(self): return self.shape[0]
@property def cols(self): return self.shape[1]
def __len__(self): return self.rows * self.cols
def __getitem__(self, key):
def to_poly(v): ground = self._dm.domain.domain gens = self._dm.domain.symbols return Poly(v.to_dict(), gens, domain=ground)
dm = self._dm
if isinstance(key, slice): items = dm.flat()[key] return [to_poly(item) for item in items] elif isinstance(key, int): i, j = divmod(key, self.cols) e = dm[i,j] return to_poly(e.element)
i, j = key if isinstance(i, int) and isinstance(j, int): return to_poly(dm[i, j].element) else: return self.from_dm(dm[i, j])
def __eq__(self, other): if not isinstance(self, type(other)): return NotImplemented return self._dm == other._dm
def __add__(self, other): if isinstance(other, type(self)): return self.from_dm(self._dm + other._dm) return NotImplemented
def __sub__(self, other): if isinstance(other, type(self)): return self.from_dm(self._dm - other._dm) return NotImplemented
def __mul__(self, other): if isinstance(other, type(self)): return self.from_dm(self._dm * other._dm) elif isinstance(other, int): other = _sympify(other) if isinstance(other, Expr): Kx = self.ring try: other_ds = DomainScalar(Kx.from_sympy(other), Kx) except (CoercionFailed, ValueError): other_ds = DomainScalar.from_sympy(other) return self.from_dm(self._dm * other_ds) return NotImplemented
def __rmul__(self, other): if isinstance(other, int): other = _sympify(other) if isinstance(other, Expr): other_ds = DomainScalar.from_sympy(other) return self.from_dm(other_ds * self._dm) return NotImplemented
def __truediv__(self, other):
if isinstance(other, Poly): other = other.as_expr() elif isinstance(other, int): other = _sympify(other) if not isinstance(other, Expr): return NotImplemented
other = self.domain.from_sympy(other) inverse = self.ring.convert_from(1/other, self.domain) inverse = DomainScalar(inverse, self.ring) dm = self._dm * inverse return self.from_dm(dm)
def __neg__(self): return self.from_dm(-self._dm)
def transpose(self): return self.from_dm(self._dm.transpose())
def row_join(self, other): dm = DomainMatrix.hstack(self._dm, other._dm) return self.from_dm(dm)
def col_join(self, other): dm = DomainMatrix.vstack(self._dm, other._dm) return self.from_dm(dm)
def applyfunc(self, func): M = self.to_Matrix().applyfunc(func) return self.from_Matrix(M, self.gens)
@classmethod def eye(cls, n, gens): return cls.from_dm(DomainMatrix.eye(n, QQ[gens]))
@classmethod def zeros(cls, m, n, gens): return cls.from_dm(DomainMatrix.zeros((m, n), QQ[gens]))
def rref(self, simplify='ignore', normalize_last='ignore'): # If this is K[x] then computes RREF in ground field K. if not (self.domain.is_Field and all(p.is_ground for p in self)): raise ValueError("PolyMatrix rref is only for ground field elements") dm = self._dm dm_ground = dm.convert_to(dm.domain.domain) dm_rref, pivots = dm_ground.rref() dm_rref = dm_rref.convert_to(dm.domain) return self.from_dm(dm_rref), pivots
def nullspace(self): # If this is K[x] then computes nullspace in ground field K. if not (self.domain.is_Field and all(p.is_ground for p in self)): raise ValueError("PolyMatrix nullspace is only for ground field elements") dm = self._dm K, Kx = self.domain, self.ring dm_null_rows = dm.convert_to(K).nullspace().convert_to(Kx) dm_null = dm_null_rows.transpose() dm_basis = [dm_null[:,i] for i in range(dm_null.shape[1])] return [self.from_dm(dmvec) for dmvec in dm_basis]
def rank(self): return self.cols - len(self.nullspace())
MutablePolyMatrix = PolyMatrix = MutablePolyDenseMatrix
|