m2m模型翻译
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2951 lines
122 KiB

7 months ago
  1. from sympy.algebras.quaternion import Quaternion
  2. from sympy.calculus.accumulationbounds import AccumBounds
  3. from sympy.combinatorics.permutations import Cycle, Permutation, AppliedPermutation
  4. from sympy.concrete.products import Product
  5. from sympy.concrete.summations import Sum
  6. from sympy.core.containers import Tuple, Dict
  7. from sympy.core.expr import UnevaluatedExpr
  8. from sympy.core.function import (Derivative, Function, Lambda, Subs, diff)
  9. from sympy.core.mod import Mod
  10. from sympy.core.mul import Mul
  11. from sympy.core.numbers import (AlgebraicNumber, Float, I, Integer, Rational, oo, pi)
  12. from sympy.core.power import Pow
  13. from sympy.core.relational import Eq, Ne
  14. from sympy.core.singleton import S
  15. from sympy.core.symbol import (Symbol, Wild, symbols)
  16. from sympy.functions.combinatorial.factorials import (FallingFactorial, RisingFactorial, binomial, factorial, factorial2, subfactorial)
  17. from sympy.functions.combinatorial.numbers import bernoulli, bell, catalan, euler, lucas, fibonacci, tribonacci
  18. from sympy.functions.elementary.complexes import (Abs, arg, conjugate, im, polar_lift, re)
  19. from sympy.functions.elementary.exponential import (LambertW, exp, log)
  20. from sympy.functions.elementary.hyperbolic import (asinh, coth)
  21. from sympy.functions.elementary.integers import (ceiling, floor, frac)
  22. from sympy.functions.elementary.miscellaneous import (Max, Min, root, sqrt)
  23. from sympy.functions.elementary.piecewise import Piecewise
  24. from sympy.functions.elementary.trigonometric import (acsc, asin, cos, cot, sin, tan)
  25. from sympy.functions.special.beta_functions import beta
  26. from sympy.functions.special.delta_functions import (DiracDelta, Heaviside)
  27. from sympy.functions.special.elliptic_integrals import (elliptic_e, elliptic_f, elliptic_k, elliptic_pi)
  28. from sympy.functions.special.error_functions import (Chi, Ci, Ei, Shi, Si, expint)
  29. from sympy.functions.special.gamma_functions import (gamma, uppergamma)
  30. from sympy.functions.special.hyper import (hyper, meijerg)
  31. from sympy.functions.special.mathieu_functions import (mathieuc, mathieucprime, mathieus, mathieusprime)
  32. from sympy.functions.special.polynomials import (assoc_laguerre, assoc_legendre, chebyshevt, chebyshevu, gegenbauer, hermite, jacobi, laguerre, legendre)
  33. from sympy.functions.special.singularity_functions import SingularityFunction
  34. from sympy.functions.special.spherical_harmonics import (Ynm, Znm)
  35. from sympy.functions.special.tensor_functions import (KroneckerDelta, LeviCivita)
  36. from sympy.functions.special.zeta_functions import (dirichlet_eta, lerchphi, polylog, stieltjes, zeta)
  37. from sympy.integrals.integrals import Integral
  38. from sympy.integrals.transforms import (CosineTransform, FourierTransform, InverseCosineTransform, InverseFourierTransform, InverseLaplaceTransform, InverseMellinTransform, InverseSineTransform, LaplaceTransform, MellinTransform, SineTransform)
  39. from sympy.logic import Implies
  40. from sympy.logic.boolalg import (And, Or, Xor, Equivalent, false, Not, true)
  41. from sympy.matrices.dense import Matrix
  42. from sympy.matrices.expressions.kronecker import KroneckerProduct
  43. from sympy.matrices.expressions.matexpr import MatrixSymbol
  44. from sympy.matrices.expressions.permutation import PermutationMatrix
  45. from sympy.matrices.expressions.slice import MatrixSlice
  46. from sympy.physics.control.lti import TransferFunction, Series, Parallel, Feedback, TransferFunctionMatrix, MIMOSeries, MIMOParallel, MIMOFeedback
  47. from sympy.ntheory.factor_ import (divisor_sigma, primenu, primeomega, reduced_totient, totient, udivisor_sigma)
  48. from sympy.physics.quantum import Commutator, Operator
  49. from sympy.physics.quantum.trace import Tr
  50. from sympy.physics.units import meter, gibibyte, microgram, second
  51. from sympy.polys.domains.integerring import ZZ
  52. from sympy.polys.fields import field
  53. from sympy.polys.polytools import Poly
  54. from sympy.polys.rings import ring
  55. from sympy.polys.rootoftools import (RootSum, rootof)
  56. from sympy.series.formal import fps
  57. from sympy.series.fourier import fourier_series
  58. from sympy.series.limits import Limit
  59. from sympy.series.order import Order
  60. from sympy.series.sequences import (SeqAdd, SeqFormula, SeqMul, SeqPer)
  61. from sympy.sets.conditionset import ConditionSet
  62. from sympy.sets.contains import Contains
  63. from sympy.sets.fancysets import (ComplexRegion, ImageSet, Range)
  64. from sympy.sets.ordinals import Ordinal, OrdinalOmega, OmegaPower
  65. from sympy.sets.powerset import PowerSet
  66. from sympy.sets.sets import (FiniteSet, Interval, Union, Intersection, Complement, SymmetricDifference, ProductSet)
  67. from sympy.sets.setexpr import SetExpr
  68. from sympy.stats.crv_types import Normal
  69. from sympy.stats.symbolic_probability import (Covariance, Expectation,
  70. Probability, Variance)
  71. from sympy.tensor.array import (ImmutableDenseNDimArray,
  72. ImmutableSparseNDimArray,
  73. MutableSparseNDimArray,
  74. MutableDenseNDimArray,
  75. tensorproduct)
  76. from sympy.tensor.array.expressions.array_expressions import ArraySymbol, ArrayElement
  77. from sympy.tensor.indexed import (Idx, Indexed, IndexedBase)
  78. from sympy.tensor.toperators import PartialDerivative
  79. from sympy.vector import CoordSys3D, Cross, Curl, Dot, Divergence, Gradient, Laplacian
  80. from sympy.testing.pytest import (XFAIL, raises, _both_exp_pow,
  81. warns_deprecated_sympy)
  82. from sympy.printing.latex import (latex, translate, greek_letters_set,
  83. tex_greek_dictionary, multiline_latex,
  84. latex_escape, LatexPrinter)
  85. import sympy as sym
  86. from sympy.abc import mu, tau
  87. class lowergamma(sym.lowergamma):
  88. pass # testing notation inheritance by a subclass with same name
  89. x, y, z, t, w, a, b, c, s, p = symbols('x y z t w a b c s p')
  90. k, m, n = symbols('k m n', integer=True)
  91. def test_printmethod():
  92. class R(Abs):
  93. def _latex(self, printer):
  94. return "foo(%s)" % printer._print(self.args[0])
  95. assert latex(R(x)) == r"foo(x)"
  96. class R(Abs):
  97. def _latex(self, printer):
  98. return "foo"
  99. assert latex(R(x)) == r"foo"
  100. def test_latex_basic():
  101. assert latex(1 + x) == r"x + 1"
  102. assert latex(x**2) == r"x^{2}"
  103. assert latex(x**(1 + x)) == r"x^{x + 1}"
  104. assert latex(x**3 + x + 1 + x**2) == r"x^{3} + x^{2} + x + 1"
  105. assert latex(2*x*y) == r"2 x y"
  106. assert latex(2*x*y, mul_symbol='dot') == r"2 \cdot x \cdot y"
  107. assert latex(3*x**2*y, mul_symbol='\\,') == r"3\,x^{2}\,y"
  108. assert latex(1.5*3**x, mul_symbol='\\,') == r"1.5 \cdot 3^{x}"
  109. assert latex(x**S.Half**5) == r"\sqrt[32]{x}"
  110. assert latex(Mul(S.Half, x**2, -5, evaluate=False)) == r"\frac{1}{2} x^{2} \left(-5\right)"
  111. assert latex(Mul(S.Half, x**2, 5, evaluate=False)) == r"\frac{1}{2} x^{2} \cdot 5"
  112. assert latex(Mul(-5, -5, evaluate=False)) == r"\left(-5\right) \left(-5\right)"
  113. assert latex(Mul(5, -5, evaluate=False)) == r"5 \left(-5\right)"
  114. assert latex(Mul(S.Half, -5, S.Half, evaluate=False)) == r"\frac{1}{2} \left(-5\right) \frac{1}{2}"
  115. assert latex(Mul(5, I, 5, evaluate=False)) == r"5 i 5"
  116. assert latex(Mul(5, I, -5, evaluate=False)) == r"5 i \left(-5\right)"
  117. assert latex(Mul(0, 1, evaluate=False)) == r'0 \cdot 1'
  118. assert latex(Mul(1, 0, evaluate=False)) == r'1 \cdot 0'
  119. assert latex(Mul(1, 1, evaluate=False)) == r'1 \cdot 1'
  120. assert latex(Mul(-1, 1, evaluate=False)) == r'\left(-1\right) 1'
  121. assert latex(Mul(1, 1, 1, evaluate=False)) == r'1 \cdot 1 \cdot 1'
  122. assert latex(Mul(1, 2, evaluate=False)) == r'1 \cdot 2'
  123. assert latex(Mul(1, S.Half, evaluate=False)) == r'1 \cdot \frac{1}{2}'
  124. assert latex(Mul(1, 1, S.Half, evaluate=False)) == \
  125. r'1 \cdot 1 \cdot \frac{1}{2}'
  126. assert latex(Mul(1, 1, 2, 3, x, evaluate=False)) == \
  127. r'1 \cdot 1 \cdot 2 \cdot 3 x'
  128. assert latex(Mul(1, -1, evaluate=False)) == r'1 \left(-1\right)'
  129. assert latex(Mul(4, 3, 2, 1, 0, y, x, evaluate=False)) == \
  130. r'4 \cdot 3 \cdot 2 \cdot 1 \cdot 0 y x'
  131. assert latex(Mul(4, 3, 2, 1+z, 0, y, x, evaluate=False)) == \
  132. r'4 \cdot 3 \cdot 2 \left(z + 1\right) 0 y x'
  133. assert latex(Mul(Rational(2, 3), Rational(5, 7), evaluate=False)) == \
  134. r'\frac{2}{3} \cdot \frac{5}{7}'
  135. assert latex(1/x) == r"\frac{1}{x}"
  136. assert latex(1/x, fold_short_frac=True) == r"1 / x"
  137. assert latex(-S(3)/2) == r"- \frac{3}{2}"
  138. assert latex(-S(3)/2, fold_short_frac=True) == r"- 3 / 2"
  139. assert latex(1/x**2) == r"\frac{1}{x^{2}}"
  140. assert latex(1/(x + y)/2) == r"\frac{1}{2 \left(x + y\right)}"
  141. assert latex(x/2) == r"\frac{x}{2}"
  142. assert latex(x/2, fold_short_frac=True) == r"x / 2"
  143. assert latex((x + y)/(2*x)) == r"\frac{x + y}{2 x}"
  144. assert latex((x + y)/(2*x), fold_short_frac=True) == \
  145. r"\left(x + y\right) / 2 x"
  146. assert latex((x + y)/(2*x), long_frac_ratio=0) == \
  147. r"\frac{1}{2 x} \left(x + y\right)"
  148. assert latex((x + y)/x) == r"\frac{x + y}{x}"
  149. assert latex((x + y)/x, long_frac_ratio=3) == r"\frac{x + y}{x}"
  150. assert latex((2*sqrt(2)*x)/3) == r"\frac{2 \sqrt{2} x}{3}"
  151. assert latex((2*sqrt(2)*x)/3, long_frac_ratio=2) == \
  152. r"\frac{2 x}{3} \sqrt{2}"
  153. assert latex(binomial(x, y)) == r"{\binom{x}{y}}"
  154. x_star = Symbol('x^*')
  155. f = Function('f')
  156. assert latex(x_star**2) == r"\left(x^{*}\right)^{2}"
  157. assert latex(x_star**2, parenthesize_super=False) == r"{x^{*}}^{2}"
  158. assert latex(Derivative(f(x_star), x_star,2)) == r"\frac{d^{2}}{d \left(x^{*}\right)^{2}} f{\left(x^{*} \right)}"
  159. assert latex(Derivative(f(x_star), x_star,2), parenthesize_super=False) == r"\frac{d^{2}}{d {x^{*}}^{2}} f{\left(x^{*} \right)}"
  160. assert latex(2*Integral(x, x)/3) == r"\frac{2 \int x\, dx}{3}"
  161. assert latex(2*Integral(x, x)/3, fold_short_frac=True) == \
  162. r"\left(2 \int x\, dx\right) / 3"
  163. assert latex(sqrt(x)) == r"\sqrt{x}"
  164. assert latex(x**Rational(1, 3)) == r"\sqrt[3]{x}"
  165. assert latex(x**Rational(1, 3), root_notation=False) == r"x^{\frac{1}{3}}"
  166. assert latex(sqrt(x)**3) == r"x^{\frac{3}{2}}"
  167. assert latex(sqrt(x), itex=True) == r"\sqrt{x}"
  168. assert latex(x**Rational(1, 3), itex=True) == r"\root{3}{x}"
  169. assert latex(sqrt(x)**3, itex=True) == r"x^{\frac{3}{2}}"
  170. assert latex(x**Rational(3, 4)) == r"x^{\frac{3}{4}}"
  171. assert latex(x**Rational(3, 4), fold_frac_powers=True) == r"x^{3/4}"
  172. assert latex((x + 1)**Rational(3, 4)) == \
  173. r"\left(x + 1\right)^{\frac{3}{4}}"
  174. assert latex((x + 1)**Rational(3, 4), fold_frac_powers=True) == \
  175. r"\left(x + 1\right)^{3/4}"
  176. assert latex(AlgebraicNumber(sqrt(2))) == r"\sqrt{2}"
  177. assert latex(AlgebraicNumber(sqrt(2), [3, -7])) == r"-7 + 3 \sqrt{2}"
  178. assert latex(AlgebraicNumber(sqrt(2), alias='alpha')) == r"\alpha"
  179. assert latex(AlgebraicNumber(sqrt(2), [3, -7], alias='alpha')) == \
  180. r"3 \alpha - 7"
  181. assert latex(AlgebraicNumber(2**(S(1)/3), [1, 3, -7], alias='beta')) == \
  182. r"\beta^{2} + 3 \beta - 7"
  183. assert latex(1.5e20*x) == r"1.5 \cdot 10^{20} x"
  184. assert latex(1.5e20*x, mul_symbol='dot') == r"1.5 \cdot 10^{20} \cdot x"
  185. assert latex(1.5e20*x, mul_symbol='times') == \
  186. r"1.5 \times 10^{20} \times x"
  187. assert latex(1/sin(x)) == r"\frac{1}{\sin{\left(x \right)}}"
  188. assert latex(sin(x)**-1) == r"\frac{1}{\sin{\left(x \right)}}"
  189. assert latex(sin(x)**Rational(3, 2)) == \
  190. r"\sin^{\frac{3}{2}}{\left(x \right)}"
  191. assert latex(sin(x)**Rational(3, 2), fold_frac_powers=True) == \
  192. r"\sin^{3/2}{\left(x \right)}"
  193. assert latex(~x) == r"\neg x"
  194. assert latex(x & y) == r"x \wedge y"
  195. assert latex(x & y & z) == r"x \wedge y \wedge z"
  196. assert latex(x | y) == r"x \vee y"
  197. assert latex(x | y | z) == r"x \vee y \vee z"
  198. assert latex((x & y) | z) == r"z \vee \left(x \wedge y\right)"
  199. assert latex(Implies(x, y)) == r"x \Rightarrow y"
  200. assert latex(~(x >> ~y)) == r"x \not\Rightarrow \neg y"
  201. assert latex(Implies(Or(x,y), z)) == r"\left(x \vee y\right) \Rightarrow z"
  202. assert latex(Implies(z, Or(x,y))) == r"z \Rightarrow \left(x \vee y\right)"
  203. assert latex(~(x & y)) == r"\neg \left(x \wedge y\right)"
  204. assert latex(~x, symbol_names={x: "x_i"}) == r"\neg x_i"
  205. assert latex(x & y, symbol_names={x: "x_i", y: "y_i"}) == \
  206. r"x_i \wedge y_i"
  207. assert latex(x & y & z, symbol_names={x: "x_i", y: "y_i", z: "z_i"}) == \
  208. r"x_i \wedge y_i \wedge z_i"
  209. assert latex(x | y, symbol_names={x: "x_i", y: "y_i"}) == r"x_i \vee y_i"
  210. assert latex(x | y | z, symbol_names={x: "x_i", y: "y_i", z: "z_i"}) == \
  211. r"x_i \vee y_i \vee z_i"
  212. assert latex((x & y) | z, symbol_names={x: "x_i", y: "y_i", z: "z_i"}) == \
  213. r"z_i \vee \left(x_i \wedge y_i\right)"
  214. assert latex(Implies(x, y), symbol_names={x: "x_i", y: "y_i"}) == \
  215. r"x_i \Rightarrow y_i"
  216. assert latex(Pow(Rational(1, 3), -1, evaluate=False)) == r"\frac{1}{\frac{1}{3}}"
  217. assert latex(Pow(Rational(1, 3), -2, evaluate=False)) == r"\frac{1}{(\frac{1}{3})^{2}}"
  218. assert latex(Pow(Integer(1)/100, -1, evaluate=False)) == r"\frac{1}{\frac{1}{100}}"
  219. p = Symbol('p', positive=True)
  220. assert latex(exp(-p)*log(p)) == r"e^{- p} \log{\left(p \right)}"
  221. def test_latex_builtins():
  222. assert latex(True) == r"\text{True}"
  223. assert latex(False) == r"\text{False}"
  224. assert latex(None) == r"\text{None}"
  225. assert latex(true) == r"\text{True}"
  226. assert latex(false) == r'\text{False}'
  227. def test_latex_SingularityFunction():
  228. assert latex(SingularityFunction(x, 4, 5)) == \
  229. r"{\left\langle x - 4 \right\rangle}^{5}"
  230. assert latex(SingularityFunction(x, -3, 4)) == \
  231. r"{\left\langle x + 3 \right\rangle}^{4}"
  232. assert latex(SingularityFunction(x, 0, 4)) == \
  233. r"{\left\langle x \right\rangle}^{4}"
  234. assert latex(SingularityFunction(x, a, n)) == \
  235. r"{\left\langle - a + x \right\rangle}^{n}"
  236. assert latex(SingularityFunction(x, 4, -2)) == \
  237. r"{\left\langle x - 4 \right\rangle}^{-2}"
  238. assert latex(SingularityFunction(x, 4, -1)) == \
  239. r"{\left\langle x - 4 \right\rangle}^{-1}"
  240. assert latex(SingularityFunction(x, 4, 5)**3) == \
  241. r"{\left({\langle x - 4 \rangle}^{5}\right)}^{3}"
  242. assert latex(SingularityFunction(x, -3, 4)**3) == \
  243. r"{\left({\langle x + 3 \rangle}^{4}\right)}^{3}"
  244. assert latex(SingularityFunction(x, 0, 4)**3) == \
  245. r"{\left({\langle x \rangle}^{4}\right)}^{3}"
  246. assert latex(SingularityFunction(x, a, n)**3) == \
  247. r"{\left({\langle - a + x \rangle}^{n}\right)}^{3}"
  248. assert latex(SingularityFunction(x, 4, -2)**3) == \
  249. r"{\left({\langle x - 4 \rangle}^{-2}\right)}^{3}"
  250. assert latex((SingularityFunction(x, 4, -1)**3)**3) == \
  251. r"{\left({\langle x - 4 \rangle}^{-1}\right)}^{9}"
  252. def test_latex_cycle():
  253. assert latex(Cycle(1, 2, 4)) == r"\left( 1\; 2\; 4\right)"
  254. assert latex(Cycle(1, 2)(4, 5, 6)) == \
  255. r"\left( 1\; 2\right)\left( 4\; 5\; 6\right)"
  256. assert latex(Cycle()) == r"\left( \right)"
  257. def test_latex_permutation():
  258. assert latex(Permutation(1, 2, 4)) == r"\left( 1\; 2\; 4\right)"
  259. assert latex(Permutation(1, 2)(4, 5, 6)) == \
  260. r"\left( 1\; 2\right)\left( 4\; 5\; 6\right)"
  261. assert latex(Permutation()) == r"\left( \right)"
  262. assert latex(Permutation(2, 4)*Permutation(5)) == \
  263. r"\left( 2\; 4\right)\left( 5\right)"
  264. assert latex(Permutation(5)) == r"\left( 5\right)"
  265. assert latex(Permutation(0, 1), perm_cyclic=False) == \
  266. r"\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}"
  267. assert latex(Permutation(0, 1)(2, 3), perm_cyclic=False) == \
  268. r"\begin{pmatrix} 0 & 1 & 2 & 3 \\ 1 & 0 & 3 & 2 \end{pmatrix}"
  269. assert latex(Permutation(), perm_cyclic=False) == \
  270. r"\left( \right)"
  271. with warns_deprecated_sympy():
  272. old_print_cyclic = Permutation.print_cyclic
  273. Permutation.print_cyclic = False
  274. assert latex(Permutation(0, 1)(2, 3)) == \
  275. r"\begin{pmatrix} 0 & 1 & 2 & 3 \\ 1 & 0 & 3 & 2 \end{pmatrix}"
  276. Permutation.print_cyclic = old_print_cyclic
  277. def test_latex_Float():
  278. assert latex(Float(1.0e100)) == r"1.0 \cdot 10^{100}"
  279. assert latex(Float(1.0e-100)) == r"1.0 \cdot 10^{-100}"
  280. assert latex(Float(1.0e-100), mul_symbol="times") == \
  281. r"1.0 \times 10^{-100}"
  282. assert latex(Float('10000.0'), full_prec=False, min=-2, max=2) == \
  283. r"1.0 \cdot 10^{4}"
  284. assert latex(Float('10000.0'), full_prec=False, min=-2, max=4) == \
  285. r"1.0 \cdot 10^{4}"
  286. assert latex(Float('10000.0'), full_prec=False, min=-2, max=5) == \
  287. r"10000.0"
  288. assert latex(Float('0.099999'), full_prec=True, min=-2, max=5) == \
  289. r"9.99990000000000 \cdot 10^{-2}"
  290. def test_latex_vector_expressions():
  291. A = CoordSys3D('A')
  292. assert latex(Cross(A.i, A.j*A.x*3+A.k)) == \
  293. r"\mathbf{\hat{i}_{A}} \times \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}} + \mathbf{\hat{k}_{A}}\right)"
  294. assert latex(Cross(A.i, A.j)) == \
  295. r"\mathbf{\hat{i}_{A}} \times \mathbf{\hat{j}_{A}}"
  296. assert latex(x*Cross(A.i, A.j)) == \
  297. r"x \left(\mathbf{\hat{i}_{A}} \times \mathbf{\hat{j}_{A}}\right)"
  298. assert latex(Cross(x*A.i, A.j)) == \
  299. r'- \mathbf{\hat{j}_{A}} \times \left((x)\mathbf{\hat{i}_{A}}\right)'
  300. assert latex(Curl(3*A.x*A.j)) == \
  301. r"\nabla\times \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)"
  302. assert latex(Curl(3*A.x*A.j+A.i)) == \
  303. r"\nabla\times \left(\mathbf{\hat{i}_{A}} + (3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)"
  304. assert latex(Curl(3*x*A.x*A.j)) == \
  305. r"\nabla\times \left((3 \mathbf{{x}_{A}} x)\mathbf{\hat{j}_{A}}\right)"
  306. assert latex(x*Curl(3*A.x*A.j)) == \
  307. r"x \left(\nabla\times \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)\right)"
  308. assert latex(Divergence(3*A.x*A.j+A.i)) == \
  309. r"\nabla\cdot \left(\mathbf{\hat{i}_{A}} + (3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)"
  310. assert latex(Divergence(3*A.x*A.j)) == \
  311. r"\nabla\cdot \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)"
  312. assert latex(x*Divergence(3*A.x*A.j)) == \
  313. r"x \left(\nabla\cdot \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)\right)"
  314. assert latex(Dot(A.i, A.j*A.x*3+A.k)) == \
  315. r"\mathbf{\hat{i}_{A}} \cdot \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}} + \mathbf{\hat{k}_{A}}\right)"
  316. assert latex(Dot(A.i, A.j)) == \
  317. r"\mathbf{\hat{i}_{A}} \cdot \mathbf{\hat{j}_{A}}"
  318. assert latex(Dot(x*A.i, A.j)) == \
  319. r"\mathbf{\hat{j}_{A}} \cdot \left((x)\mathbf{\hat{i}_{A}}\right)"
  320. assert latex(x*Dot(A.i, A.j)) == \
  321. r"x \left(\mathbf{\hat{i}_{A}} \cdot \mathbf{\hat{j}_{A}}\right)"
  322. assert latex(Gradient(A.x)) == r"\nabla \mathbf{{x}_{A}}"
  323. assert latex(Gradient(A.x + 3*A.y)) == \
  324. r"\nabla \left(\mathbf{{x}_{A}} + 3 \mathbf{{y}_{A}}\right)"
  325. assert latex(x*Gradient(A.x)) == r"x \left(\nabla \mathbf{{x}_{A}}\right)"
  326. assert latex(Gradient(x*A.x)) == r"\nabla \left(\mathbf{{x}_{A}} x\right)"
  327. assert latex(Laplacian(A.x)) == r"\triangle \mathbf{{x}_{A}}"
  328. assert latex(Laplacian(A.x + 3*A.y)) == \
  329. r"\triangle \left(\mathbf{{x}_{A}} + 3 \mathbf{{y}_{A}}\right)"
  330. assert latex(x*Laplacian(A.x)) == r"x \left(\triangle \mathbf{{x}_{A}}\right)"
  331. assert latex(Laplacian(x*A.x)) == r"\triangle \left(\mathbf{{x}_{A}} x\right)"
  332. def test_latex_symbols():
  333. Gamma, lmbda, rho = symbols('Gamma, lambda, rho')
  334. tau, Tau, TAU, taU = symbols('tau, Tau, TAU, taU')
  335. assert latex(tau) == r"\tau"
  336. assert latex(Tau) == r"T"
  337. assert latex(TAU) == r"\tau"
  338. assert latex(taU) == r"\tau"
  339. # Check that all capitalized greek letters are handled explicitly
  340. capitalized_letters = {l.capitalize() for l in greek_letters_set}
  341. assert len(capitalized_letters - set(tex_greek_dictionary.keys())) == 0
  342. assert latex(Gamma + lmbda) == r"\Gamma + \lambda"
  343. assert latex(Gamma * lmbda) == r"\Gamma \lambda"
  344. assert latex(Symbol('q1')) == r"q_{1}"
  345. assert latex(Symbol('q21')) == r"q_{21}"
  346. assert latex(Symbol('epsilon0')) == r"\epsilon_{0}"
  347. assert latex(Symbol('omega1')) == r"\omega_{1}"
  348. assert latex(Symbol('91')) == r"91"
  349. assert latex(Symbol('alpha_new')) == r"\alpha_{new}"
  350. assert latex(Symbol('C^orig')) == r"C^{orig}"
  351. assert latex(Symbol('x^alpha')) == r"x^{\alpha}"
  352. assert latex(Symbol('beta^alpha')) == r"\beta^{\alpha}"
  353. assert latex(Symbol('e^Alpha')) == r"e^{A}"
  354. assert latex(Symbol('omega_alpha^beta')) == r"\omega^{\beta}_{\alpha}"
  355. assert latex(Symbol('omega') ** Symbol('beta')) == r"\omega^{\beta}"
  356. @XFAIL
  357. def test_latex_symbols_failing():
  358. rho, mass, volume = symbols('rho, mass, volume')
  359. assert latex(
  360. volume * rho == mass) == r"\rho \mathrm{volume} = \mathrm{mass}"
  361. assert latex(volume / mass * rho == 1) == \
  362. r"\rho \mathrm{volume} {\mathrm{mass}}^{(-1)} = 1"
  363. assert latex(mass**3 * volume**3) == \
  364. r"{\mathrm{mass}}^{3} \cdot {\mathrm{volume}}^{3}"
  365. @_both_exp_pow
  366. def test_latex_functions():
  367. assert latex(exp(x)) == r"e^{x}"
  368. assert latex(exp(1) + exp(2)) == r"e + e^{2}"
  369. f = Function('f')
  370. assert latex(f(x)) == r'f{\left(x \right)}'
  371. assert latex(f) == r'f'
  372. g = Function('g')
  373. assert latex(g(x, y)) == r'g{\left(x,y \right)}'
  374. assert latex(g) == r'g'
  375. h = Function('h')
  376. assert latex(h(x, y, z)) == r'h{\left(x,y,z \right)}'
  377. assert latex(h) == r'h'
  378. Li = Function('Li')
  379. assert latex(Li) == r'\operatorname{Li}'
  380. assert latex(Li(x)) == r'\operatorname{Li}{\left(x \right)}'
  381. mybeta = Function('beta')
  382. # not to be confused with the beta function
  383. assert latex(mybeta(x, y, z)) == r"\beta{\left(x,y,z \right)}"
  384. assert latex(beta(x, y)) == r'\operatorname{B}\left(x, y\right)'
  385. assert latex(beta(x, y)**2) == r'\operatorname{B}^{2}\left(x, y\right)'
  386. assert latex(mybeta(x)) == r"\beta{\left(x \right)}"
  387. assert latex(mybeta) == r"\beta"
  388. g = Function('gamma')
  389. # not to be confused with the gamma function
  390. assert latex(g(x, y, z)) == r"\gamma{\left(x,y,z \right)}"
  391. assert latex(g(x)) == r"\gamma{\left(x \right)}"
  392. assert latex(g) == r"\gamma"
  393. a1 = Function('a_1')
  394. assert latex(a1) == r"\operatorname{a_{1}}"
  395. assert latex(a1(x)) == r"\operatorname{a_{1}}{\left(x \right)}"
  396. # issue 5868
  397. omega1 = Function('omega1')
  398. assert latex(omega1) == r"\omega_{1}"
  399. assert latex(omega1(x)) == r"\omega_{1}{\left(x \right)}"
  400. assert latex(sin(x)) == r"\sin{\left(x \right)}"
  401. assert latex(sin(x), fold_func_brackets=True) == r"\sin {x}"
  402. assert latex(sin(2*x**2), fold_func_brackets=True) == \
  403. r"\sin {2 x^{2}}"
  404. assert latex(sin(x**2), fold_func_brackets=True) == \
  405. r"\sin {x^{2}}"
  406. assert latex(asin(x)**2) == r"\operatorname{asin}^{2}{\left(x \right)}"
  407. assert latex(asin(x)**2, inv_trig_style="full") == \
  408. r"\arcsin^{2}{\left(x \right)}"
  409. assert latex(asin(x)**2, inv_trig_style="power") == \
  410. r"\sin^{-1}{\left(x \right)}^{2}"
  411. assert latex(asin(x**2), inv_trig_style="power",
  412. fold_func_brackets=True) == \
  413. r"\sin^{-1} {x^{2}}"
  414. assert latex(acsc(x), inv_trig_style="full") == \
  415. r"\operatorname{arccsc}{\left(x \right)}"
  416. assert latex(asinh(x), inv_trig_style="full") == \
  417. r"\operatorname{arsinh}{\left(x \right)}"
  418. assert latex(factorial(k)) == r"k!"
  419. assert latex(factorial(-k)) == r"\left(- k\right)!"
  420. assert latex(factorial(k)**2) == r"k!^{2}"
  421. assert latex(subfactorial(k)) == r"!k"
  422. assert latex(subfactorial(-k)) == r"!\left(- k\right)"
  423. assert latex(subfactorial(k)**2) == r"\left(!k\right)^{2}"
  424. assert latex(factorial2(k)) == r"k!!"
  425. assert latex(factorial2(-k)) == r"\left(- k\right)!!"
  426. assert latex(factorial2(k)**2) == r"k!!^{2}"
  427. assert latex(binomial(2, k)) == r"{\binom{2}{k}}"
  428. assert latex(binomial(2, k)**2) == r"{\binom{2}{k}}^{2}"
  429. assert latex(FallingFactorial(3, k)) == r"{\left(3\right)}_{k}"
  430. assert latex(RisingFactorial(3, k)) == r"{3}^{\left(k\right)}"
  431. assert latex(floor(x)) == r"\left\lfloor{x}\right\rfloor"
  432. assert latex(ceiling(x)) == r"\left\lceil{x}\right\rceil"
  433. assert latex(frac(x)) == r"\operatorname{frac}{\left(x\right)}"
  434. assert latex(floor(x)**2) == r"\left\lfloor{x}\right\rfloor^{2}"
  435. assert latex(ceiling(x)**2) == r"\left\lceil{x}\right\rceil^{2}"
  436. assert latex(frac(x)**2) == r"\operatorname{frac}{\left(x\right)}^{2}"
  437. assert latex(Min(x, 2, x**3)) == r"\min\left(2, x, x^{3}\right)"
  438. assert latex(Min(x, y)**2) == r"\min\left(x, y\right)^{2}"
  439. assert latex(Max(x, 2, x**3)) == r"\max\left(2, x, x^{3}\right)"
  440. assert latex(Max(x, y)**2) == r"\max\left(x, y\right)^{2}"
  441. assert latex(Abs(x)) == r"\left|{x}\right|"
  442. assert latex(Abs(x)**2) == r"\left|{x}\right|^{2}"
  443. assert latex(re(x)) == r"\operatorname{re}{\left(x\right)}"
  444. assert latex(re(x + y)) == \
  445. r"\operatorname{re}{\left(x\right)} + \operatorname{re}{\left(y\right)}"
  446. assert latex(im(x)) == r"\operatorname{im}{\left(x\right)}"
  447. assert latex(conjugate(x)) == r"\overline{x}"
  448. assert latex(conjugate(x)**2) == r"\overline{x}^{2}"
  449. assert latex(conjugate(x**2)) == r"\overline{x}^{2}"
  450. assert latex(gamma(x)) == r"\Gamma\left(x\right)"
  451. w = Wild('w')
  452. assert latex(gamma(w)) == r"\Gamma\left(w\right)"
  453. assert latex(Order(x)) == r"O\left(x\right)"
  454. assert latex(Order(x, x)) == r"O\left(x\right)"
  455. assert latex(Order(x, (x, 0))) == r"O\left(x\right)"
  456. assert latex(Order(x, (x, oo))) == r"O\left(x; x\rightarrow \infty\right)"
  457. assert latex(Order(x - y, (x, y))) == \
  458. r"O\left(x - y; x\rightarrow y\right)"
  459. assert latex(Order(x, x, y)) == \
  460. r"O\left(x; \left( x, \ y\right)\rightarrow \left( 0, \ 0\right)\right)"
  461. assert latex(Order(x, x, y)) == \
  462. r"O\left(x; \left( x, \ y\right)\rightarrow \left( 0, \ 0\right)\right)"
  463. assert latex(Order(x, (x, oo), (y, oo))) == \
  464. r"O\left(x; \left( x, \ y\right)\rightarrow \left( \infty, \ \infty\right)\right)"
  465. assert latex(lowergamma(x, y)) == r'\gamma\left(x, y\right)'
  466. assert latex(lowergamma(x, y)**2) == r'\gamma^{2}\left(x, y\right)'
  467. assert latex(uppergamma(x, y)) == r'\Gamma\left(x, y\right)'
  468. assert latex(uppergamma(x, y)**2) == r'\Gamma^{2}\left(x, y\right)'
  469. assert latex(cot(x)) == r'\cot{\left(x \right)}'
  470. assert latex(coth(x)) == r'\coth{\left(x \right)}'
  471. assert latex(re(x)) == r'\operatorname{re}{\left(x\right)}'
  472. assert latex(im(x)) == r'\operatorname{im}{\left(x\right)}'
  473. assert latex(root(x, y)) == r'x^{\frac{1}{y}}'
  474. assert latex(arg(x)) == r'\arg{\left(x \right)}'
  475. assert latex(zeta(x)) == r"\zeta\left(x\right)"
  476. assert latex(zeta(x)**2) == r"\zeta^{2}\left(x\right)"
  477. assert latex(zeta(x, y)) == r"\zeta\left(x, y\right)"
  478. assert latex(zeta(x, y)**2) == r"\zeta^{2}\left(x, y\right)"
  479. assert latex(dirichlet_eta(x)) == r"\eta\left(x\right)"
  480. assert latex(dirichlet_eta(x)**2) == r"\eta^{2}\left(x\right)"
  481. assert latex(polylog(x, y)) == r"\operatorname{Li}_{x}\left(y\right)"
  482. assert latex(
  483. polylog(x, y)**2) == r"\operatorname{Li}_{x}^{2}\left(y\right)"
  484. assert latex(lerchphi(x, y, n)) == r"\Phi\left(x, y, n\right)"
  485. assert latex(lerchphi(x, y, n)**2) == r"\Phi^{2}\left(x, y, n\right)"
  486. assert latex(stieltjes(x)) == r"\gamma_{x}"
  487. assert latex(stieltjes(x)**2) == r"\gamma_{x}^{2}"
  488. assert latex(stieltjes(x, y)) == r"\gamma_{x}\left(y\right)"
  489. assert latex(stieltjes(x, y)**2) == r"\gamma_{x}\left(y\right)^{2}"
  490. assert latex(elliptic_k(z)) == r"K\left(z\right)"
  491. assert latex(elliptic_k(z)**2) == r"K^{2}\left(z\right)"
  492. assert latex(elliptic_f(x, y)) == r"F\left(x\middle| y\right)"
  493. assert latex(elliptic_f(x, y)**2) == r"F^{2}\left(x\middle| y\right)"
  494. assert latex(elliptic_e(x, y)) == r"E\left(x\middle| y\right)"
  495. assert latex(elliptic_e(x, y)**2) == r"E^{2}\left(x\middle| y\right)"
  496. assert latex(elliptic_e(z)) == r"E\left(z\right)"
  497. assert latex(elliptic_e(z)**2) == r"E^{2}\left(z\right)"
  498. assert latex(elliptic_pi(x, y, z)) == r"\Pi\left(x; y\middle| z\right)"
  499. assert latex(elliptic_pi(x, y, z)**2) == \
  500. r"\Pi^{2}\left(x; y\middle| z\right)"
  501. assert latex(elliptic_pi(x, y)) == r"\Pi\left(x\middle| y\right)"
  502. assert latex(elliptic_pi(x, y)**2) == r"\Pi^{2}\left(x\middle| y\right)"
  503. assert latex(Ei(x)) == r'\operatorname{Ei}{\left(x \right)}'
  504. assert latex(Ei(x)**2) == r'\operatorname{Ei}^{2}{\left(x \right)}'
  505. assert latex(expint(x, y)) == r'\operatorname{E}_{x}\left(y\right)'
  506. assert latex(expint(x, y)**2) == r'\operatorname{E}_{x}^{2}\left(y\right)'
  507. assert latex(Shi(x)**2) == r'\operatorname{Shi}^{2}{\left(x \right)}'
  508. assert latex(Si(x)**2) == r'\operatorname{Si}^{2}{\left(x \right)}'
  509. assert latex(Ci(x)**2) == r'\operatorname{Ci}^{2}{\left(x \right)}'
  510. assert latex(Chi(x)**2) == r'\operatorname{Chi}^{2}\left(x\right)'
  511. assert latex(Chi(x)) == r'\operatorname{Chi}\left(x\right)'
  512. assert latex(jacobi(n, a, b, x)) == \
  513. r'P_{n}^{\left(a,b\right)}\left(x\right)'
  514. assert latex(jacobi(n, a, b, x)**2) == \
  515. r'\left(P_{n}^{\left(a,b\right)}\left(x\right)\right)^{2}'
  516. assert latex(gegenbauer(n, a, x)) == \
  517. r'C_{n}^{\left(a\right)}\left(x\right)'
  518. assert latex(gegenbauer(n, a, x)**2) == \
  519. r'\left(C_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
  520. assert latex(chebyshevt(n, x)) == r'T_{n}\left(x\right)'
  521. assert latex(chebyshevt(n, x)**2) == \
  522. r'\left(T_{n}\left(x\right)\right)^{2}'
  523. assert latex(chebyshevu(n, x)) == r'U_{n}\left(x\right)'
  524. assert latex(chebyshevu(n, x)**2) == \
  525. r'\left(U_{n}\left(x\right)\right)^{2}'
  526. assert latex(legendre(n, x)) == r'P_{n}\left(x\right)'
  527. assert latex(legendre(n, x)**2) == r'\left(P_{n}\left(x\right)\right)^{2}'
  528. assert latex(assoc_legendre(n, a, x)) == \
  529. r'P_{n}^{\left(a\right)}\left(x\right)'
  530. assert latex(assoc_legendre(n, a, x)**2) == \
  531. r'\left(P_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
  532. assert latex(laguerre(n, x)) == r'L_{n}\left(x\right)'
  533. assert latex(laguerre(n, x)**2) == r'\left(L_{n}\left(x\right)\right)^{2}'
  534. assert latex(assoc_laguerre(n, a, x)) == \
  535. r'L_{n}^{\left(a\right)}\left(x\right)'
  536. assert latex(assoc_laguerre(n, a, x)**2) == \
  537. r'\left(L_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
  538. assert latex(hermite(n, x)) == r'H_{n}\left(x\right)'
  539. assert latex(hermite(n, x)**2) == r'\left(H_{n}\left(x\right)\right)^{2}'
  540. theta = Symbol("theta", real=True)
  541. phi = Symbol("phi", real=True)
  542. assert latex(Ynm(n, m, theta, phi)) == r'Y_{n}^{m}\left(\theta,\phi\right)'
  543. assert latex(Ynm(n, m, theta, phi)**3) == \
  544. r'\left(Y_{n}^{m}\left(\theta,\phi\right)\right)^{3}'
  545. assert latex(Znm(n, m, theta, phi)) == r'Z_{n}^{m}\left(\theta,\phi\right)'
  546. assert latex(Znm(n, m, theta, phi)**3) == \
  547. r'\left(Z_{n}^{m}\left(\theta,\phi\right)\right)^{3}'
  548. # Test latex printing of function names with "_"
  549. assert latex(polar_lift(0)) == \
  550. r"\operatorname{polar\_lift}{\left(0 \right)}"
  551. assert latex(polar_lift(0)**3) == \
  552. r"\operatorname{polar\_lift}^{3}{\left(0 \right)}"
  553. assert latex(totient(n)) == r'\phi\left(n\right)'
  554. assert latex(totient(n) ** 2) == r'\left(\phi\left(n\right)\right)^{2}'
  555. assert latex(reduced_totient(n)) == r'\lambda\left(n\right)'
  556. assert latex(reduced_totient(n) ** 2) == \
  557. r'\left(\lambda\left(n\right)\right)^{2}'
  558. assert latex(divisor_sigma(x)) == r"\sigma\left(x\right)"
  559. assert latex(divisor_sigma(x)**2) == r"\sigma^{2}\left(x\right)"
  560. assert latex(divisor_sigma(x, y)) == r"\sigma_y\left(x\right)"
  561. assert latex(divisor_sigma(x, y)**2) == r"\sigma^{2}_y\left(x\right)"
  562. assert latex(udivisor_sigma(x)) == r"\sigma^*\left(x\right)"
  563. assert latex(udivisor_sigma(x)**2) == r"\sigma^*^{2}\left(x\right)"
  564. assert latex(udivisor_sigma(x, y)) == r"\sigma^*_y\left(x\right)"
  565. assert latex(udivisor_sigma(x, y)**2) == r"\sigma^*^{2}_y\left(x\right)"
  566. assert latex(primenu(n)) == r'\nu\left(n\right)'
  567. assert latex(primenu(n) ** 2) == r'\left(\nu\left(n\right)\right)^{2}'
  568. assert latex(primeomega(n)) == r'\Omega\left(n\right)'
  569. assert latex(primeomega(n) ** 2) == \
  570. r'\left(\Omega\left(n\right)\right)^{2}'
  571. assert latex(LambertW(n)) == r'W\left(n\right)'
  572. assert latex(LambertW(n, -1)) == r'W_{-1}\left(n\right)'
  573. assert latex(LambertW(n, k)) == r'W_{k}\left(n\right)'
  574. assert latex(LambertW(n) * LambertW(n)) == r"W^{2}\left(n\right)"
  575. assert latex(Pow(LambertW(n), 2)) == r"W^{2}\left(n\right)"
  576. assert latex(LambertW(n)**k) == r"W^{k}\left(n\right)"
  577. assert latex(LambertW(n, k)**p) == r"W^{p}_{k}\left(n\right)"
  578. assert latex(Mod(x, 7)) == r'x \bmod 7'
  579. assert latex(Mod(x + 1, 7)) == r'\left(x + 1\right) \bmod 7'
  580. assert latex(Mod(7, x + 1)) == r'7 \bmod \left(x + 1\right)'
  581. assert latex(Mod(2 * x, 7)) == r'2 x \bmod 7'
  582. assert latex(Mod(7, 2 * x)) == r'7 \bmod 2 x'
  583. assert latex(Mod(x, 7) + 1) == r'\left(x \bmod 7\right) + 1'
  584. assert latex(2 * Mod(x, 7)) == r'2 \left(x \bmod 7\right)'
  585. assert latex(Mod(7, 2 * x)**n) == r'\left(7 \bmod 2 x\right)^{n}'
  586. # some unknown function name should get rendered with \operatorname
  587. fjlkd = Function('fjlkd')
  588. assert latex(fjlkd(x)) == r'\operatorname{fjlkd}{\left(x \right)}'
  589. # even when it is referred to without an argument
  590. assert latex(fjlkd) == r'\operatorname{fjlkd}'
  591. # test that notation passes to subclasses of the same name only
  592. def test_function_subclass_different_name():
  593. class mygamma(gamma):
  594. pass
  595. assert latex(mygamma) == r"\operatorname{mygamma}"
  596. assert latex(mygamma(x)) == r"\operatorname{mygamma}{\left(x \right)}"
  597. def test_hyper_printing():
  598. from sympy.abc import x, z
  599. assert latex(meijerg(Tuple(pi, pi, x), Tuple(1),
  600. (0, 1), Tuple(1, 2, 3/pi), z)) == \
  601. r'{G_{4, 5}^{2, 3}\left(\begin{matrix} \pi, \pi, x & 1 \\0, 1 & 1, 2, '\
  602. r'\frac{3}{\pi} \end{matrix} \middle| {z} \right)}'
  603. assert latex(meijerg(Tuple(), Tuple(1), (0,), Tuple(), z)) == \
  604. r'{G_{1, 1}^{1, 0}\left(\begin{matrix} & 1 \\0 & \end{matrix} \middle| {z} \right)}'
  605. assert latex(hyper((x, 2), (3,), z)) == \
  606. r'{{}_{2}F_{1}\left(\begin{matrix} x, 2 ' \
  607. r'\\ 3 \end{matrix}\middle| {z} \right)}'
  608. assert latex(hyper(Tuple(), Tuple(1), z)) == \
  609. r'{{}_{0}F_{1}\left(\begin{matrix} ' \
  610. r'\\ 1 \end{matrix}\middle| {z} \right)}'
  611. def test_latex_bessel():
  612. from sympy.functions.special.bessel import (besselj, bessely, besseli,
  613. besselk, hankel1, hankel2,
  614. jn, yn, hn1, hn2)
  615. from sympy.abc import z
  616. assert latex(besselj(n, z**2)**k) == r'J^{k}_{n}\left(z^{2}\right)'
  617. assert latex(bessely(n, z)) == r'Y_{n}\left(z\right)'
  618. assert latex(besseli(n, z)) == r'I_{n}\left(z\right)'
  619. assert latex(besselk(n, z)) == r'K_{n}\left(z\right)'
  620. assert latex(hankel1(n, z**2)**2) == \
  621. r'\left(H^{(1)}_{n}\left(z^{2}\right)\right)^{2}'
  622. assert latex(hankel2(n, z)) == r'H^{(2)}_{n}\left(z\right)'
  623. assert latex(jn(n, z)) == r'j_{n}\left(z\right)'
  624. assert latex(yn(n, z)) == r'y_{n}\left(z\right)'
  625. assert latex(hn1(n, z)) == r'h^{(1)}_{n}\left(z\right)'
  626. assert latex(hn2(n, z)) == r'h^{(2)}_{n}\left(z\right)'
  627. def test_latex_fresnel():
  628. from sympy.functions.special.error_functions import (fresnels, fresnelc)
  629. from sympy.abc import z
  630. assert latex(fresnels(z)) == r'S\left(z\right)'
  631. assert latex(fresnelc(z)) == r'C\left(z\right)'
  632. assert latex(fresnels(z)**2) == r'S^{2}\left(z\right)'
  633. assert latex(fresnelc(z)**2) == r'C^{2}\left(z\right)'
  634. def test_latex_brackets():
  635. assert latex((-1)**x) == r"\left(-1\right)^{x}"
  636. def test_latex_indexed():
  637. Psi_symbol = Symbol('Psi_0', complex=True, real=False)
  638. Psi_indexed = IndexedBase(Symbol('Psi', complex=True, real=False))
  639. symbol_latex = latex(Psi_symbol * conjugate(Psi_symbol))
  640. indexed_latex = latex(Psi_indexed[0] * conjugate(Psi_indexed[0]))
  641. # \\overline{{\\Psi}_{0}} {\\Psi}_{0} vs. \\Psi_{0} \\overline{\\Psi_{0}}
  642. assert symbol_latex == r'\Psi_{0} \overline{\Psi_{0}}'
  643. assert indexed_latex == r'\overline{{\Psi}_{0}} {\Psi}_{0}'
  644. # Symbol('gamma') gives r'\gamma'
  645. interval = '\\mathrel{..}\\nobreak'
  646. assert latex(Indexed('x1', Symbol('i'))) == r'{x_{1}}_{i}'
  647. assert latex(Indexed('x2', Idx('i'))) == r'{x_{2}}_{i}'
  648. assert latex(Indexed('x3', Idx('i', Symbol('N')))) == r'{x_{3}}_{{i}_{0'+interval+'N - 1}}'
  649. assert latex(Indexed('x3', Idx('i', Symbol('N')+1))) == r'{x_{3}}_{{i}_{0'+interval+'N}}'
  650. assert latex(Indexed('x4', Idx('i', (Symbol('a'),Symbol('b'))))) == r'{x_{4}}_{{i}_{a'+interval+'b}}'
  651. assert latex(IndexedBase('gamma')) == r'\gamma'
  652. assert latex(IndexedBase('a b')) == r'a b'
  653. assert latex(IndexedBase('a_b')) == r'a_{b}'
  654. def test_latex_derivatives():
  655. # regular "d" for ordinary derivatives
  656. assert latex(diff(x**3, x, evaluate=False)) == \
  657. r"\frac{d}{d x} x^{3}"
  658. assert latex(diff(sin(x) + x**2, x, evaluate=False)) == \
  659. r"\frac{d}{d x} \left(x^{2} + \sin{\left(x \right)}\right)"
  660. assert latex(diff(diff(sin(x) + x**2, x, evaluate=False), evaluate=False))\
  661. == \
  662. r"\frac{d^{2}}{d x^{2}} \left(x^{2} + \sin{\left(x \right)}\right)"
  663. assert latex(diff(diff(diff(sin(x) + x**2, x, evaluate=False), evaluate=False), evaluate=False)) == \
  664. r"\frac{d^{3}}{d x^{3}} \left(x^{2} + \sin{\left(x \right)}\right)"
  665. # \partial for partial derivatives
  666. assert latex(diff(sin(x * y), x, evaluate=False)) == \
  667. r"\frac{\partial}{\partial x} \sin{\left(x y \right)}"
  668. assert latex(diff(sin(x * y) + x**2, x, evaluate=False)) == \
  669. r"\frac{\partial}{\partial x} \left(x^{2} + \sin{\left(x y \right)}\right)"
  670. assert latex(diff(diff(sin(x*y) + x**2, x, evaluate=False), x, evaluate=False)) == \
  671. r"\frac{\partial^{2}}{\partial x^{2}} \left(x^{2} + \sin{\left(x y \right)}\right)"
  672. assert latex(diff(diff(diff(sin(x*y) + x**2, x, evaluate=False), x, evaluate=False), x, evaluate=False)) == \
  673. r"\frac{\partial^{3}}{\partial x^{3}} \left(x^{2} + \sin{\left(x y \right)}\right)"
  674. # mixed partial derivatives
  675. f = Function("f")
  676. assert latex(diff(diff(f(x, y), x, evaluate=False), y, evaluate=False)) == \
  677. r"\frac{\partial^{2}}{\partial y\partial x} " + latex(f(x, y))
  678. assert latex(diff(diff(diff(f(x, y), x, evaluate=False), x, evaluate=False), y, evaluate=False)) == \
  679. r"\frac{\partial^{3}}{\partial y\partial x^{2}} " + latex(f(x, y))
  680. # for negative nested Derivative
  681. assert latex(diff(-diff(y**2,x,evaluate=False),x,evaluate=False)) == r'\frac{d}{d x} \left(- \frac{d}{d x} y^{2}\right)'
  682. assert latex(diff(diff(-diff(diff(y,x,evaluate=False),x,evaluate=False),x,evaluate=False),x,evaluate=False)) == \
  683. r'\frac{d^{2}}{d x^{2}} \left(- \frac{d^{2}}{d x^{2}} y\right)'
  684. # use ordinary d when one of the variables has been integrated out
  685. assert latex(diff(Integral(exp(-x*y), (x, 0, oo)), y, evaluate=False)) == \
  686. r"\frac{d}{d y} \int\limits_{0}^{\infty} e^{- x y}\, dx"
  687. # Derivative wrapped in power:
  688. assert latex(diff(x, x, evaluate=False)**2) == \
  689. r"\left(\frac{d}{d x} x\right)^{2}"
  690. assert latex(diff(f(x), x)**2) == \
  691. r"\left(\frac{d}{d x} f{\left(x \right)}\right)^{2}"
  692. assert latex(diff(f(x), (x, n))) == \
  693. r"\frac{d^{n}}{d x^{n}} f{\left(x \right)}"
  694. x1 = Symbol('x1')
  695. x2 = Symbol('x2')
  696. assert latex(diff(f(x1, x2), x1)) == r'\frac{\partial}{\partial x_{1}} f{\left(x_{1},x_{2} \right)}'
  697. n1 = Symbol('n1')
  698. assert latex(diff(f(x), (x, n1))) == r'\frac{d^{n_{1}}}{d x^{n_{1}}} f{\left(x \right)}'
  699. n2 = Symbol('n2')
  700. assert latex(diff(f(x), (x, Max(n1, n2)))) == \
  701. r'\frac{d^{\max\left(n_{1}, n_{2}\right)}}{d x^{\max\left(n_{1}, n_{2}\right)}} f{\left(x \right)}'
  702. def test_latex_subs():
  703. assert latex(Subs(x*y, (x, y), (1, 2))) == r'\left. x y \right|_{\substack{ x=1\\ y=2 }}'
  704. def test_latex_integrals():
  705. assert latex(Integral(log(x), x)) == r"\int \log{\left(x \right)}\, dx"
  706. assert latex(Integral(x**2, (x, 0, 1))) == \
  707. r"\int\limits_{0}^{1} x^{2}\, dx"
  708. assert latex(Integral(x**2, (x, 10, 20))) == \
  709. r"\int\limits_{10}^{20} x^{2}\, dx"
  710. assert latex(Integral(y*x**2, (x, 0, 1), y)) == \
  711. r"\int\int\limits_{0}^{1} x^{2} y\, dx\, dy"
  712. assert latex(Integral(y*x**2, (x, 0, 1), y), mode='equation*') == \
  713. r"\begin{equation*}\int\int\limits_{0}^{1} x^{2} y\, dx\, dy\end{equation*}"
  714. assert latex(Integral(y*x**2, (x, 0, 1), y), mode='equation*', itex=True) \
  715. == r"$$\int\int_{0}^{1} x^{2} y\, dx\, dy$$"
  716. assert latex(Integral(x, (x, 0))) == r"\int\limits^{0} x\, dx"
  717. assert latex(Integral(x*y, x, y)) == r"\iint x y\, dx\, dy"
  718. assert latex(Integral(x*y*z, x, y, z)) == r"\iiint x y z\, dx\, dy\, dz"
  719. assert latex(Integral(x*y*z*t, x, y, z, t)) == \
  720. r"\iiiint t x y z\, dx\, dy\, dz\, dt"
  721. assert latex(Integral(x, x, x, x, x, x, x)) == \
  722. r"\int\int\int\int\int\int x\, dx\, dx\, dx\, dx\, dx\, dx"
  723. assert latex(Integral(x, x, y, (z, 0, 1))) == \
  724. r"\int\limits_{0}^{1}\int\int x\, dx\, dy\, dz"
  725. # for negative nested Integral
  726. assert latex(Integral(-Integral(y**2,x),x)) == \
  727. r'\int \left(- \int y^{2}\, dx\right)\, dx'
  728. assert latex(Integral(-Integral(-Integral(y,x),x),x)) == \
  729. r'\int \left(- \int \left(- \int y\, dx\right)\, dx\right)\, dx'
  730. # fix issue #10806
  731. assert latex(Integral(z, z)**2) == r"\left(\int z\, dz\right)^{2}"
  732. assert latex(Integral(x + z, z)) == r"\int \left(x + z\right)\, dz"
  733. assert latex(Integral(x+z/2, z)) == \
  734. r"\int \left(x + \frac{z}{2}\right)\, dz"
  735. assert latex(Integral(x**y, z)) == r"\int x^{y}\, dz"
  736. def test_latex_sets():
  737. for s in (frozenset, set):
  738. assert latex(s([x*y, x**2])) == r"\left\{x^{2}, x y\right\}"
  739. assert latex(s(range(1, 6))) == r"\left\{1, 2, 3, 4, 5\right\}"
  740. assert latex(s(range(1, 13))) == \
  741. r"\left\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\right\}"
  742. s = FiniteSet
  743. assert latex(s(*[x*y, x**2])) == r"\left\{x^{2}, x y\right\}"
  744. assert latex(s(*range(1, 6))) == r"\left\{1, 2, 3, 4, 5\right\}"
  745. assert latex(s(*range(1, 13))) == \
  746. r"\left\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\right\}"
  747. def test_latex_SetExpr():
  748. iv = Interval(1, 3)
  749. se = SetExpr(iv)
  750. assert latex(se) == r"SetExpr\left(\left[1, 3\right]\right)"
  751. def test_latex_Range():
  752. assert latex(Range(1, 51)) == r'\left\{1, 2, \ldots, 50\right\}'
  753. assert latex(Range(1, 4)) == r'\left\{1, 2, 3\right\}'
  754. assert latex(Range(0, 3, 1)) == r'\left\{0, 1, 2\right\}'
  755. assert latex(Range(0, 30, 1)) == r'\left\{0, 1, \ldots, 29\right\}'
  756. assert latex(Range(30, 1, -1)) == r'\left\{30, 29, \ldots, 2\right\}'
  757. assert latex(Range(0, oo, 2)) == r'\left\{0, 2, \ldots\right\}'
  758. assert latex(Range(oo, -2, -2)) == r'\left\{\ldots, 2, 0\right\}'
  759. assert latex(Range(-2, -oo, -1)) == r'\left\{-2, -3, \ldots\right\}'
  760. assert latex(Range(-oo, oo)) == r'\left\{\ldots, -1, 0, 1, \ldots\right\}'
  761. assert latex(Range(oo, -oo, -1)) == r'\left\{\ldots, 1, 0, -1, \ldots\right\}'
  762. a, b, c = symbols('a:c')
  763. assert latex(Range(a, b, c)) == r'\text{Range}\left(a, b, c\right)'
  764. assert latex(Range(a, 10, 1)) == r'\text{Range}\left(a, 10\right)'
  765. assert latex(Range(0, b, 1)) == r'\text{Range}\left(b\right)'
  766. assert latex(Range(0, 10, c)) == r'\text{Range}\left(0, 10, c\right)'
  767. i = Symbol('i', integer=True)
  768. n = Symbol('n', negative=True, integer=True)
  769. p = Symbol('p', positive=True, integer=True)
  770. assert latex(Range(i, i + 3)) == r'\left\{i, i + 1, i + 2\right\}'
  771. assert latex(Range(-oo, n, 2)) == r'\left\{\ldots, n - 4, n - 2\right\}'
  772. assert latex(Range(p, oo)) == r'\left\{p, p + 1, \ldots\right\}'
  773. # The following will work if __iter__ is improved
  774. # assert latex(Range(-3, p + 7)) == r'\left\{-3, -2, \ldots, p + 6\right\}'
  775. # Must have integer assumptions
  776. assert latex(Range(a, a + 3)) == r'\text{Range}\left(a, a + 3\right)'
  777. def test_latex_sequences():
  778. s1 = SeqFormula(a**2, (0, oo))
  779. s2 = SeqPer((1, 2))
  780. latex_str = r'\left[0, 1, 4, 9, \ldots\right]'
  781. assert latex(s1) == latex_str
  782. latex_str = r'\left[1, 2, 1, 2, \ldots\right]'
  783. assert latex(s2) == latex_str
  784. s3 = SeqFormula(a**2, (0, 2))
  785. s4 = SeqPer((1, 2), (0, 2))
  786. latex_str = r'\left[0, 1, 4\right]'
  787. assert latex(s3) == latex_str
  788. latex_str = r'\left[1, 2, 1\right]'
  789. assert latex(s4) == latex_str
  790. s5 = SeqFormula(a**2, (-oo, 0))
  791. s6 = SeqPer((1, 2), (-oo, 0))
  792. latex_str = r'\left[\ldots, 9, 4, 1, 0\right]'
  793. assert latex(s5) == latex_str
  794. latex_str = r'\left[\ldots, 2, 1, 2, 1\right]'
  795. assert latex(s6) == latex_str
  796. latex_str = r'\left[1, 3, 5, 11, \ldots\right]'
  797. assert latex(SeqAdd(s1, s2)) == latex_str
  798. latex_str = r'\left[1, 3, 5\right]'
  799. assert latex(SeqAdd(s3, s4)) == latex_str
  800. latex_str = r'\left[\ldots, 11, 5, 3, 1\right]'
  801. assert latex(SeqAdd(s5, s6)) == latex_str
  802. latex_str = r'\left[0, 2, 4, 18, \ldots\right]'
  803. assert latex(SeqMul(s1, s2)) == latex_str
  804. latex_str = r'\left[0, 2, 4\right]'
  805. assert latex(SeqMul(s3, s4)) == latex_str
  806. latex_str = r'\left[\ldots, 18, 4, 2, 0\right]'
  807. assert latex(SeqMul(s5, s6)) == latex_str
  808. # Sequences with symbolic limits, issue 12629
  809. s7 = SeqFormula(a**2, (a, 0, x))
  810. latex_str = r'\left\{a^{2}\right\}_{a=0}^{x}'
  811. assert latex(s7) == latex_str
  812. b = Symbol('b')
  813. s8 = SeqFormula(b*a**2, (a, 0, 2))
  814. latex_str = r'\left[0, b, 4 b\right]'
  815. assert latex(s8) == latex_str
  816. def test_latex_FourierSeries():
  817. latex_str = \
  818. r'2 \sin{\left(x \right)} - \sin{\left(2 x \right)} + \frac{2 \sin{\left(3 x \right)}}{3} + \ldots'
  819. assert latex(fourier_series(x, (x, -pi, pi))) == latex_str
  820. def test_latex_FormalPowerSeries():
  821. latex_str = r'\sum_{k=1}^{\infty} - \frac{\left(-1\right)^{- k} x^{k}}{k}'
  822. assert latex(fps(log(1 + x))) == latex_str
  823. def test_latex_intervals():
  824. a = Symbol('a', real=True)
  825. assert latex(Interval(0, 0)) == r"\left\{0\right\}"
  826. assert latex(Interval(0, a)) == r"\left[0, a\right]"
  827. assert latex(Interval(0, a, False, False)) == r"\left[0, a\right]"
  828. assert latex(Interval(0, a, True, False)) == r"\left(0, a\right]"
  829. assert latex(Interval(0, a, False, True)) == r"\left[0, a\right)"
  830. assert latex(Interval(0, a, True, True)) == r"\left(0, a\right)"
  831. def test_latex_AccumuBounds():
  832. a = Symbol('a', real=True)
  833. assert latex(AccumBounds(0, 1)) == r"\left\langle 0, 1\right\rangle"
  834. assert latex(AccumBounds(0, a)) == r"\left\langle 0, a\right\rangle"
  835. assert latex(AccumBounds(a + 1, a + 2)) == \
  836. r"\left\langle a + 1, a + 2\right\rangle"
  837. def test_latex_emptyset():
  838. assert latex(S.EmptySet) == r"\emptyset"
  839. def test_latex_universalset():
  840. assert latex(S.UniversalSet) == r"\mathbb{U}"
  841. def test_latex_commutator():
  842. A = Operator('A')
  843. B = Operator('B')
  844. comm = Commutator(B, A)
  845. assert latex(comm.doit()) == r"- (A B - B A)"
  846. def test_latex_union():
  847. assert latex(Union(Interval(0, 1), Interval(2, 3))) == \
  848. r"\left[0, 1\right] \cup \left[2, 3\right]"
  849. assert latex(Union(Interval(1, 1), Interval(2, 2), Interval(3, 4))) == \
  850. r"\left\{1, 2\right\} \cup \left[3, 4\right]"
  851. def test_latex_intersection():
  852. assert latex(Intersection(Interval(0, 1), Interval(x, y))) == \
  853. r"\left[0, 1\right] \cap \left[x, y\right]"
  854. def test_latex_symmetric_difference():
  855. assert latex(SymmetricDifference(Interval(2, 5), Interval(4, 7),
  856. evaluate=False)) == \
  857. r'\left[2, 5\right] \triangle \left[4, 7\right]'
  858. def test_latex_Complement():
  859. assert latex(Complement(S.Reals, S.Naturals)) == \
  860. r"\mathbb{R} \setminus \mathbb{N}"
  861. def test_latex_productset():
  862. line = Interval(0, 1)
  863. bigline = Interval(0, 10)
  864. fset = FiniteSet(1, 2, 3)
  865. assert latex(line**2) == r"%s^{2}" % latex(line)
  866. assert latex(line**10) == r"%s^{10}" % latex(line)
  867. assert latex((line * bigline * fset).flatten()) == r"%s \times %s \times %s" % (
  868. latex(line), latex(bigline), latex(fset))
  869. def test_latex_powerset():
  870. fset = FiniteSet(1, 2, 3)
  871. assert latex(PowerSet(fset)) == r'\mathcal{P}\left(\left\{1, 2, 3\right\}\right)'
  872. def test_latex_ordinals():
  873. w = OrdinalOmega()
  874. assert latex(w) == r"\omega"
  875. wp = OmegaPower(2, 3)
  876. assert latex(wp) == r'3 \omega^{2}'
  877. assert latex(Ordinal(wp, OmegaPower(1, 1))) == r'3 \omega^{2} + \omega'
  878. assert latex(Ordinal(OmegaPower(2, 1), OmegaPower(1, 2))) == r'\omega^{2} + 2 \omega'
  879. def test_set_operators_parenthesis():
  880. a, b, c, d = symbols('a:d')
  881. A = FiniteSet(a)
  882. B = FiniteSet(b)
  883. C = FiniteSet(c)
  884. D = FiniteSet(d)
  885. U1 = Union(A, B, evaluate=False)
  886. U2 = Union(C, D, evaluate=False)
  887. I1 = Intersection(A, B, evaluate=False)
  888. I2 = Intersection(C, D, evaluate=False)
  889. C1 = Complement(A, B, evaluate=False)
  890. C2 = Complement(C, D, evaluate=False)
  891. D1 = SymmetricDifference(A, B, evaluate=False)
  892. D2 = SymmetricDifference(C, D, evaluate=False)
  893. # XXX ProductSet does not support evaluate keyword
  894. P1 = ProductSet(A, B)
  895. P2 = ProductSet(C, D)
  896. assert latex(Intersection(A, U2, evaluate=False)) == \
  897. r'\left\{a\right\} \cap ' \
  898. r'\left(\left\{c\right\} \cup \left\{d\right\}\right)'
  899. assert latex(Intersection(U1, U2, evaluate=False)) == \
  900. r'\left(\left\{a\right\} \cup \left\{b\right\}\right) ' \
  901. r'\cap \left(\left\{c\right\} \cup \left\{d\right\}\right)'
  902. assert latex(Intersection(C1, C2, evaluate=False)) == \
  903. r'\left(\left\{a\right\} \setminus ' \
  904. r'\left\{b\right\}\right) \cap \left(\left\{c\right\} ' \
  905. r'\setminus \left\{d\right\}\right)'
  906. assert latex(Intersection(D1, D2, evaluate=False)) == \
  907. r'\left(\left\{a\right\} \triangle ' \
  908. r'\left\{b\right\}\right) \cap \left(\left\{c\right\} ' \
  909. r'\triangle \left\{d\right\}\right)'
  910. assert latex(Intersection(P1, P2, evaluate=False)) == \
  911. r'\left(\left\{a\right\} \times \left\{b\right\}\right) ' \
  912. r'\cap \left(\left\{c\right\} \times ' \
  913. r'\left\{d\right\}\right)'
  914. assert latex(Union(A, I2, evaluate=False)) == \
  915. r'\left\{a\right\} \cup ' \
  916. r'\left(\left\{c\right\} \cap \left\{d\right\}\right)'
  917. assert latex(Union(I1, I2, evaluate=False)) == \
  918. r'\left(\left\{a\right\} \cap \left\{b\right\}\right) ' \
  919. r'\cup \left(\left\{c\right\} \cap \left\{d\right\}\right)'
  920. assert latex(Union(C1, C2, evaluate=False)) == \
  921. r'\left(\left\{a\right\} \setminus ' \
  922. r'\left\{b\right\}\right) \cup \left(\left\{c\right\} ' \
  923. r'\setminus \left\{d\right\}\right)'
  924. assert latex(Union(D1, D2, evaluate=False)) == \
  925. r'\left(\left\{a\right\} \triangle ' \
  926. r'\left\{b\right\}\right) \cup \left(\left\{c\right\} ' \
  927. r'\triangle \left\{d\right\}\right)'
  928. assert latex(Union(P1, P2, evaluate=False)) == \
  929. r'\left(\left\{a\right\} \times \left\{b\right\}\right) ' \
  930. r'\cup \left(\left\{c\right\} \times ' \
  931. r'\left\{d\right\}\right)'
  932. assert latex(Complement(A, C2, evaluate=False)) == \
  933. r'\left\{a\right\} \setminus \left(\left\{c\right\} ' \
  934. r'\setminus \left\{d\right\}\right)'
  935. assert latex(Complement(U1, U2, evaluate=False)) == \
  936. r'\left(\left\{a\right\} \cup \left\{b\right\}\right) ' \
  937. r'\setminus \left(\left\{c\right\} \cup ' \
  938. r'\left\{d\right\}\right)'
  939. assert latex(Complement(I1, I2, evaluate=False)) == \
  940. r'\left(\left\{a\right\} \cap \left\{b\right\}\right) ' \
  941. r'\setminus \left(\left\{c\right\} \cap ' \
  942. r'\left\{d\right\}\right)'
  943. assert latex(Complement(D1, D2, evaluate=False)) == \
  944. r'\left(\left\{a\right\} \triangle ' \
  945. r'\left\{b\right\}\right) \setminus ' \
  946. r'\left(\left\{c\right\} \triangle \left\{d\right\}\right)'
  947. assert latex(Complement(P1, P2, evaluate=False)) == \
  948. r'\left(\left\{a\right\} \times \left\{b\right\}\right) '\
  949. r'\setminus \left(\left\{c\right\} \times '\
  950. r'\left\{d\right\}\right)'
  951. assert latex(SymmetricDifference(A, D2, evaluate=False)) == \
  952. r'\left\{a\right\} \triangle \left(\left\{c\right\} ' \
  953. r'\triangle \left\{d\right\}\right)'
  954. assert latex(SymmetricDifference(U1, U2, evaluate=False)) == \
  955. r'\left(\left\{a\right\} \cup \left\{b\right\}\right) ' \
  956. r'\triangle \left(\left\{c\right\} \cup ' \
  957. r'\left\{d\right\}\right)'
  958. assert latex(SymmetricDifference(I1, I2, evaluate=False)) == \
  959. r'\left(\left\{a\right\} \cap \left\{b\right\}\right) ' \
  960. r'\triangle \left(\left\{c\right\} \cap ' \
  961. r'\left\{d\right\}\right)'
  962. assert latex(SymmetricDifference(C1, C2, evaluate=False)) == \
  963. r'\left(\left\{a\right\} \setminus ' \
  964. r'\left\{b\right\}\right) \triangle ' \
  965. r'\left(\left\{c\right\} \setminus \left\{d\right\}\right)'
  966. assert latex(SymmetricDifference(P1, P2, evaluate=False)) == \
  967. r'\left(\left\{a\right\} \times \left\{b\right\}\right) ' \
  968. r'\triangle \left(\left\{c\right\} \times ' \
  969. r'\left\{d\right\}\right)'
  970. # XXX This can be incorrect since cartesian product is not associative
  971. assert latex(ProductSet(A, P2).flatten()) == \
  972. r'\left\{a\right\} \times \left\{c\right\} \times ' \
  973. r'\left\{d\right\}'
  974. assert latex(ProductSet(U1, U2)) == \
  975. r'\left(\left\{a\right\} \cup \left\{b\right\}\right) ' \
  976. r'\times \left(\left\{c\right\} \cup ' \
  977. r'\left\{d\right\}\right)'
  978. assert latex(ProductSet(I1, I2)) == \
  979. r'\left(\left\{a\right\} \cap \left\{b\right\}\right) ' \
  980. r'\times \left(\left\{c\right\} \cap ' \
  981. r'\left\{d\right\}\right)'
  982. assert latex(ProductSet(C1, C2)) == \
  983. r'\left(\left\{a\right\} \setminus ' \
  984. r'\left\{b\right\}\right) \times \left(\left\{c\right\} ' \
  985. r'\setminus \left\{d\right\}\right)'
  986. assert latex(ProductSet(D1, D2)) == \
  987. r'\left(\left\{a\right\} \triangle ' \
  988. r'\left\{b\right\}\right) \times \left(\left\{c\right\} ' \
  989. r'\triangle \left\{d\right\}\right)'
  990. def test_latex_Complexes():
  991. assert latex(S.Complexes) == r"\mathbb{C}"
  992. def test_latex_Naturals():
  993. assert latex(S.Naturals) == r"\mathbb{N}"
  994. def test_latex_Naturals0():
  995. assert latex(S.Naturals0) == r"\mathbb{N}_0"
  996. def test_latex_Integers():
  997. assert latex(S.Integers) == r"\mathbb{Z}"
  998. def test_latex_ImageSet():
  999. x = Symbol('x')
  1000. assert latex(ImageSet(Lambda(x, x**2), S.Naturals)) == \
  1001. r"\left\{x^{2}\; \middle|\; x \in \mathbb{N}\right\}"
  1002. y = Symbol('y')
  1003. imgset = ImageSet(Lambda((x, y), x + y), {1, 2, 3}, {3, 4})
  1004. assert latex(imgset) == \
  1005. r"\left\{x + y\; \middle|\; x \in \left\{1, 2, 3\right\}, y \in \left\{3, 4\right\}\right\}"
  1006. imgset = ImageSet(Lambda(((x, y),), x + y), ProductSet({1, 2, 3}, {3, 4}))
  1007. assert latex(imgset) == \
  1008. r"\left\{x + y\; \middle|\; \left( x, \ y\right) \in \left\{1, 2, 3\right\} \times \left\{3, 4\right\}\right\}"
  1009. def test_latex_ConditionSet():
  1010. x = Symbol('x')
  1011. assert latex(ConditionSet(x, Eq(x**2, 1), S.Reals)) == \
  1012. r"\left\{x\; \middle|\; x \in \mathbb{R} \wedge x^{2} = 1 \right\}"
  1013. assert latex(ConditionSet(x, Eq(x**2, 1), S.UniversalSet)) == \
  1014. r"\left\{x\; \middle|\; x^{2} = 1 \right\}"
  1015. def test_latex_ComplexRegion():
  1016. assert latex(ComplexRegion(Interval(3, 5)*Interval(4, 6))) == \
  1017. r"\left\{x + y i\; \middle|\; x, y \in \left[3, 5\right] \times \left[4, 6\right] \right\}"
  1018. assert latex(ComplexRegion(Interval(0, 1)*Interval(0, 2*pi), polar=True)) == \
  1019. r"\left\{r \left(i \sin{\left(\theta \right)} + \cos{\left(\theta "\
  1020. r"\right)}\right)\; \middle|\; r, \theta \in \left[0, 1\right] \times \left[0, 2 \pi\right) \right\}"
  1021. def test_latex_Contains():
  1022. x = Symbol('x')
  1023. assert latex(Contains(x, S.Naturals)) == r"x \in \mathbb{N}"
  1024. def test_latex_sum():
  1025. assert latex(Sum(x*y**2, (x, -2, 2), (y, -5, 5))) == \
  1026. r"\sum_{\substack{-2 \leq x \leq 2\\-5 \leq y \leq 5}} x y^{2}"
  1027. assert latex(Sum(x**2, (x, -2, 2))) == \
  1028. r"\sum_{x=-2}^{2} x^{2}"
  1029. assert latex(Sum(x**2 + y, (x, -2, 2))) == \
  1030. r"\sum_{x=-2}^{2} \left(x^{2} + y\right)"
  1031. assert latex(Sum(x**2 + y, (x, -2, 2))**2) == \
  1032. r"\left(\sum_{x=-2}^{2} \left(x^{2} + y\right)\right)^{2}"
  1033. def test_latex_product():
  1034. assert latex(Product(x*y**2, (x, -2, 2), (y, -5, 5))) == \
  1035. r"\prod_{\substack{-2 \leq x \leq 2\\-5 \leq y \leq 5}} x y^{2}"
  1036. assert latex(Product(x**2, (x, -2, 2))) == \
  1037. r"\prod_{x=-2}^{2} x^{2}"
  1038. assert latex(Product(x**2 + y, (x, -2, 2))) == \
  1039. r"\prod_{x=-2}^{2} \left(x^{2} + y\right)"
  1040. assert latex(Product(x, (x, -2, 2))**2) == \
  1041. r"\left(\prod_{x=-2}^{2} x\right)^{2}"
  1042. def test_latex_limits():
  1043. assert latex(Limit(x, x, oo)) == r"\lim_{x \to \infty} x"
  1044. # issue 8175
  1045. f = Function('f')
  1046. assert latex(Limit(f(x), x, 0)) == r"\lim_{x \to 0^+} f{\left(x \right)}"
  1047. assert latex(Limit(f(x), x, 0, "-")) == \
  1048. r"\lim_{x \to 0^-} f{\left(x \right)}"
  1049. # issue #10806
  1050. assert latex(Limit(f(x), x, 0)**2) == \
  1051. r"\left(\lim_{x \to 0^+} f{\left(x \right)}\right)^{2}"
  1052. # bi-directional limit
  1053. assert latex(Limit(f(x), x, 0, dir='+-')) == \
  1054. r"\lim_{x \to 0} f{\left(x \right)}"
  1055. def test_latex_log():
  1056. assert latex(log(x)) == r"\log{\left(x \right)}"
  1057. assert latex(log(x), ln_notation=True) == r"\ln{\left(x \right)}"
  1058. assert latex(log(x) + log(y)) == \
  1059. r"\log{\left(x \right)} + \log{\left(y \right)}"
  1060. assert latex(log(x) + log(y), ln_notation=True) == \
  1061. r"\ln{\left(x \right)} + \ln{\left(y \right)}"
  1062. assert latex(pow(log(x), x)) == r"\log{\left(x \right)}^{x}"
  1063. assert latex(pow(log(x), x), ln_notation=True) == \
  1064. r"\ln{\left(x \right)}^{x}"
  1065. def test_issue_3568():
  1066. beta = Symbol(r'\beta')
  1067. y = beta + x
  1068. assert latex(y) in [r'\beta + x', r'x + \beta']
  1069. beta = Symbol(r'beta')
  1070. y = beta + x
  1071. assert latex(y) in [r'\beta + x', r'x + \beta']
  1072. def test_latex():
  1073. assert latex((2*tau)**Rational(7, 2)) == r"8 \sqrt{2} \tau^{\frac{7}{2}}"
  1074. assert latex((2*mu)**Rational(7, 2), mode='equation*') == \
  1075. r"\begin{equation*}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation*}"
  1076. assert latex((2*mu)**Rational(7, 2), mode='equation', itex=True) == \
  1077. r"$$8 \sqrt{2} \mu^{\frac{7}{2}}$$"
  1078. assert latex([2/x, y]) == r"\left[ \frac{2}{x}, \ y\right]"
  1079. def test_latex_dict():
  1080. d = {Rational(1): 1, x**2: 2, x: 3, x**3: 4}
  1081. assert latex(d) == \
  1082. r'\left\{ 1 : 1, \ x : 3, \ x^{2} : 2, \ x^{3} : 4\right\}'
  1083. D = Dict(d)
  1084. assert latex(D) == \
  1085. r'\left\{ 1 : 1, \ x : 3, \ x^{2} : 2, \ x^{3} : 4\right\}'
  1086. def test_latex_list():
  1087. ll = [Symbol('omega1'), Symbol('a'), Symbol('alpha')]
  1088. assert latex(ll) == r'\left[ \omega_{1}, \ a, \ \alpha\right]'
  1089. def test_latex_NumberSymbols():
  1090. assert latex(S.Catalan) == "G"
  1091. assert latex(S.EulerGamma) == r"\gamma"
  1092. assert latex(S.Exp1) == "e"
  1093. assert latex(S.GoldenRatio) == r"\phi"
  1094. assert latex(S.Pi) == r"\pi"
  1095. assert latex(S.TribonacciConstant) == r"\text{TribonacciConstant}"
  1096. def test_latex_rational():
  1097. # tests issue 3973
  1098. assert latex(-Rational(1, 2)) == r"- \frac{1}{2}"
  1099. assert latex(Rational(-1, 2)) == r"- \frac{1}{2}"
  1100. assert latex(Rational(1, -2)) == r"- \frac{1}{2}"
  1101. assert latex(-Rational(-1, 2)) == r"\frac{1}{2}"
  1102. assert latex(-Rational(1, 2)*x) == r"- \frac{x}{2}"
  1103. assert latex(-Rational(1, 2)*x + Rational(-2, 3)*y) == \
  1104. r"- \frac{x}{2} - \frac{2 y}{3}"
  1105. def test_latex_inverse():
  1106. # tests issue 4129
  1107. assert latex(1/x) == r"\frac{1}{x}"
  1108. assert latex(1/(x + y)) == r"\frac{1}{x + y}"
  1109. def test_latex_DiracDelta():
  1110. assert latex(DiracDelta(x)) == r"\delta\left(x\right)"
  1111. assert latex(DiracDelta(x)**2) == r"\left(\delta\left(x\right)\right)^{2}"
  1112. assert latex(DiracDelta(x, 0)) == r"\delta\left(x\right)"
  1113. assert latex(DiracDelta(x, 5)) == \
  1114. r"\delta^{\left( 5 \right)}\left( x \right)"
  1115. assert latex(DiracDelta(x, 5)**2) == \
  1116. r"\left(\delta^{\left( 5 \right)}\left( x \right)\right)^{2}"
  1117. def test_latex_Heaviside():
  1118. assert latex(Heaviside(x)) == r"\theta\left(x\right)"
  1119. assert latex(Heaviside(x)**2) == r"\left(\theta\left(x\right)\right)^{2}"
  1120. def test_latex_KroneckerDelta():
  1121. assert latex(KroneckerDelta(x, y)) == r"\delta_{x y}"
  1122. assert latex(KroneckerDelta(x, y + 1)) == r"\delta_{x, y + 1}"
  1123. # issue 6578
  1124. assert latex(KroneckerDelta(x + 1, y)) == r"\delta_{y, x + 1}"
  1125. assert latex(Pow(KroneckerDelta(x, y), 2, evaluate=False)) == \
  1126. r"\left(\delta_{x y}\right)^{2}"
  1127. def test_latex_LeviCivita():
  1128. assert latex(LeviCivita(x, y, z)) == r"\varepsilon_{x y z}"
  1129. assert latex(LeviCivita(x, y, z)**2) == \
  1130. r"\left(\varepsilon_{x y z}\right)^{2}"
  1131. assert latex(LeviCivita(x, y, z + 1)) == r"\varepsilon_{x, y, z + 1}"
  1132. assert latex(LeviCivita(x, y + 1, z)) == r"\varepsilon_{x, y + 1, z}"
  1133. assert latex(LeviCivita(x + 1, y, z)) == r"\varepsilon_{x + 1, y, z}"
  1134. def test_mode():
  1135. expr = x + y
  1136. assert latex(expr) == r'x + y'
  1137. assert latex(expr, mode='plain') == r'x + y'
  1138. assert latex(expr, mode='inline') == r'$x + y$'
  1139. assert latex(
  1140. expr, mode='equation*') == r'\begin{equation*}x + y\end{equation*}'
  1141. assert latex(
  1142. expr, mode='equation') == r'\begin{equation}x + y\end{equation}'
  1143. raises(ValueError, lambda: latex(expr, mode='foo'))
  1144. def test_latex_mathieu():
  1145. assert latex(mathieuc(x, y, z)) == r"C\left(x, y, z\right)"
  1146. assert latex(mathieus(x, y, z)) == r"S\left(x, y, z\right)"
  1147. assert latex(mathieuc(x, y, z)**2) == r"C\left(x, y, z\right)^{2}"
  1148. assert latex(mathieus(x, y, z)**2) == r"S\left(x, y, z\right)^{2}"
  1149. assert latex(mathieucprime(x, y, z)) == r"C^{\prime}\left(x, y, z\right)"
  1150. assert latex(mathieusprime(x, y, z)) == r"S^{\prime}\left(x, y, z\right)"
  1151. assert latex(mathieucprime(x, y, z)**2) == r"C^{\prime}\left(x, y, z\right)^{2}"
  1152. assert latex(mathieusprime(x, y, z)**2) == r"S^{\prime}\left(x, y, z\right)^{2}"
  1153. def test_latex_Piecewise():
  1154. p = Piecewise((x, x < 1), (x**2, True))
  1155. assert latex(p) == r"\begin{cases} x & \text{for}\: x < 1 \\x^{2} &" \
  1156. r" \text{otherwise} \end{cases}"
  1157. assert latex(p, itex=True) == \
  1158. r"\begin{cases} x & \text{for}\: x \lt 1 \\x^{2} &" \
  1159. r" \text{otherwise} \end{cases}"
  1160. p = Piecewise((x, x < 0), (0, x >= 0))
  1161. assert latex(p) == r'\begin{cases} x & \text{for}\: x < 0 \\0 &' \
  1162. r' \text{otherwise} \end{cases}'
  1163. A, B = symbols("A B", commutative=False)
  1164. p = Piecewise((A**2, Eq(A, B)), (A*B, True))
  1165. s = r"\begin{cases} A^{2} & \text{for}\: A = B \\A B & \text{otherwise} \end{cases}"
  1166. assert latex(p) == s
  1167. assert latex(A*p) == r"A \left(%s\right)" % s
  1168. assert latex(p*A) == r"\left(%s\right) A" % s
  1169. assert latex(Piecewise((x, x < 1), (x**2, x < 2))) == \
  1170. r'\begin{cases} x & ' \
  1171. r'\text{for}\: x < 1 \\x^{2} & \text{for}\: x < 2 \end{cases}'
  1172. def test_latex_Matrix():
  1173. M = Matrix([[1 + x, y], [y, x - 1]])
  1174. assert latex(M) == \
  1175. r'\left[\begin{matrix}x + 1 & y\\y & x - 1\end{matrix}\right]'
  1176. assert latex(M, mode='inline') == \
  1177. r'$\left[\begin{smallmatrix}x + 1 & y\\' \
  1178. r'y & x - 1\end{smallmatrix}\right]$'
  1179. assert latex(M, mat_str='array') == \
  1180. r'\left[\begin{array}{cc}x + 1 & y\\y & x - 1\end{array}\right]'
  1181. assert latex(M, mat_str='bmatrix') == \
  1182. r'\left[\begin{bmatrix}x + 1 & y\\y & x - 1\end{bmatrix}\right]'
  1183. assert latex(M, mat_delim=None, mat_str='bmatrix') == \
  1184. r'\begin{bmatrix}x + 1 & y\\y & x - 1\end{bmatrix}'
  1185. M2 = Matrix(1, 11, range(11))
  1186. assert latex(M2) == \
  1187. r'\left[\begin{array}{ccccccccccc}' \
  1188. r'0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}\right]'
  1189. def test_latex_matrix_with_functions():
  1190. t = symbols('t')
  1191. theta1 = symbols('theta1', cls=Function)
  1192. M = Matrix([[sin(theta1(t)), cos(theta1(t))],
  1193. [cos(theta1(t).diff(t)), sin(theta1(t).diff(t))]])
  1194. expected = (r'\left[\begin{matrix}\sin{\left('
  1195. r'\theta_{1}{\left(t \right)} \right)} & '
  1196. r'\cos{\left(\theta_{1}{\left(t \right)} \right)'
  1197. r'}\\\cos{\left(\frac{d}{d t} \theta_{1}{\left(t '
  1198. r'\right)} \right)} & \sin{\left(\frac{d}{d t} '
  1199. r'\theta_{1}{\left(t \right)} \right'
  1200. r')}\end{matrix}\right]')
  1201. assert latex(M) == expected
  1202. def test_latex_NDimArray():
  1203. x, y, z, w = symbols("x y z w")
  1204. for ArrayType in (ImmutableDenseNDimArray, ImmutableSparseNDimArray,
  1205. MutableDenseNDimArray, MutableSparseNDimArray):
  1206. # Basic: scalar array
  1207. M = ArrayType(x)
  1208. assert latex(M) == r"x"
  1209. M = ArrayType([[1 / x, y], [z, w]])
  1210. M1 = ArrayType([1 / x, y, z])
  1211. M2 = tensorproduct(M1, M)
  1212. M3 = tensorproduct(M, M)
  1213. assert latex(M) == \
  1214. r'\left[\begin{matrix}\frac{1}{x} & y\\z & w\end{matrix}\right]'
  1215. assert latex(M1) == \
  1216. r"\left[\begin{matrix}\frac{1}{x} & y & z\end{matrix}\right]"
  1217. assert latex(M2) == \
  1218. r"\left[\begin{matrix}" \
  1219. r"\left[\begin{matrix}\frac{1}{x^{2}} & \frac{y}{x}\\\frac{z}{x} & \frac{w}{x}\end{matrix}\right] & " \
  1220. r"\left[\begin{matrix}\frac{y}{x} & y^{2}\\y z & w y\end{matrix}\right] & " \
  1221. r"\left[\begin{matrix}\frac{z}{x} & y z\\z^{2} & w z\end{matrix}\right]" \
  1222. r"\end{matrix}\right]"
  1223. assert latex(M3) == \
  1224. r"""\left[\begin{matrix}"""\
  1225. r"""\left[\begin{matrix}\frac{1}{x^{2}} & \frac{y}{x}\\\frac{z}{x} & \frac{w}{x}\end{matrix}\right] & """\
  1226. r"""\left[\begin{matrix}\frac{y}{x} & y^{2}\\y z & w y\end{matrix}\right]\\"""\
  1227. r"""\left[\begin{matrix}\frac{z}{x} & y z\\z^{2} & w z\end{matrix}\right] & """\
  1228. r"""\left[\begin{matrix}\frac{w}{x} & w y\\w z & w^{2}\end{matrix}\right]"""\
  1229. r"""\end{matrix}\right]"""
  1230. Mrow = ArrayType([[x, y, 1/z]])
  1231. Mcolumn = ArrayType([[x], [y], [1/z]])
  1232. Mcol2 = ArrayType([Mcolumn.tolist()])
  1233. assert latex(Mrow) == \
  1234. r"\left[\left[\begin{matrix}x & y & \frac{1}{z}\end{matrix}\right]\right]"
  1235. assert latex(Mcolumn) == \
  1236. r"\left[\begin{matrix}x\\y\\\frac{1}{z}\end{matrix}\right]"
  1237. assert latex(Mcol2) == \
  1238. r'\left[\begin{matrix}\left[\begin{matrix}x\\y\\\frac{1}{z}\end{matrix}\right]\end{matrix}\right]'
  1239. def test_latex_mul_symbol():
  1240. assert latex(4*4**x, mul_symbol='times') == r"4 \times 4^{x}"
  1241. assert latex(4*4**x, mul_symbol='dot') == r"4 \cdot 4^{x}"
  1242. assert latex(4*4**x, mul_symbol='ldot') == r"4 \,.\, 4^{x}"
  1243. assert latex(4*x, mul_symbol='times') == r"4 \times x"
  1244. assert latex(4*x, mul_symbol='dot') == r"4 \cdot x"
  1245. assert latex(4*x, mul_symbol='ldot') == r"4 \,.\, x"
  1246. def test_latex_issue_4381():
  1247. y = 4*4**log(2)
  1248. assert latex(y) == r'4 \cdot 4^{\log{\left(2 \right)}}'
  1249. assert latex(1/y) == r'\frac{1}{4 \cdot 4^{\log{\left(2 \right)}}}'
  1250. def test_latex_issue_4576():
  1251. assert latex(Symbol("beta_13_2")) == r"\beta_{13 2}"
  1252. assert latex(Symbol("beta_132_20")) == r"\beta_{132 20}"
  1253. assert latex(Symbol("beta_13")) == r"\beta_{13}"
  1254. assert latex(Symbol("x_a_b")) == r"x_{a b}"
  1255. assert latex(Symbol("x_1_2_3")) == r"x_{1 2 3}"
  1256. assert latex(Symbol("x_a_b1")) == r"x_{a b1}"
  1257. assert latex(Symbol("x_a_1")) == r"x_{a 1}"
  1258. assert latex(Symbol("x_1_a")) == r"x_{1 a}"
  1259. assert latex(Symbol("x_1^aa")) == r"x^{aa}_{1}"
  1260. assert latex(Symbol("x_1__aa")) == r"x^{aa}_{1}"
  1261. assert latex(Symbol("x_11^a")) == r"x^{a}_{11}"
  1262. assert latex(Symbol("x_11__a")) == r"x^{a}_{11}"
  1263. assert latex(Symbol("x_a_a_a_a")) == r"x_{a a a a}"
  1264. assert latex(Symbol("x_a_a^a^a")) == r"x^{a a}_{a a}"
  1265. assert latex(Symbol("x_a_a__a__a")) == r"x^{a a}_{a a}"
  1266. assert latex(Symbol("alpha_11")) == r"\alpha_{11}"
  1267. assert latex(Symbol("alpha_11_11")) == r"\alpha_{11 11}"
  1268. assert latex(Symbol("alpha_alpha")) == r"\alpha_{\alpha}"
  1269. assert latex(Symbol("alpha^aleph")) == r"\alpha^{\aleph}"
  1270. assert latex(Symbol("alpha__aleph")) == r"\alpha^{\aleph}"
  1271. def test_latex_pow_fraction():
  1272. x = Symbol('x')
  1273. # Testing exp
  1274. assert r'e^{-x}' in latex(exp(-x)/2).replace(' ', '') # Remove Whitespace
  1275. # Testing e^{-x} in case future changes alter behavior of muls or fracs
  1276. # In particular current output is \frac{1}{2}e^{- x} but perhaps this will
  1277. # change to \frac{e^{-x}}{2}
  1278. # Testing general, non-exp, power
  1279. assert r'3^{-x}' in latex(3**-x/2).replace(' ', '')
  1280. def test_noncommutative():
  1281. A, B, C = symbols('A,B,C', commutative=False)
  1282. assert latex(A*B*C**-1) == r"A B C^{-1}"
  1283. assert latex(C**-1*A*B) == r"C^{-1} A B"
  1284. assert latex(A*C**-1*B) == r"A C^{-1} B"
  1285. def test_latex_order():
  1286. expr = x**3 + x**2*y + y**4 + 3*x*y**3
  1287. assert latex(expr, order='lex') == r"x^{3} + x^{2} y + 3 x y^{3} + y^{4}"
  1288. assert latex(
  1289. expr, order='rev-lex') == r"y^{4} + 3 x y^{3} + x^{2} y + x^{3}"
  1290. assert latex(expr, order='none') == r"x^{3} + y^{4} + y x^{2} + 3 x y^{3}"
  1291. def test_latex_Lambda():
  1292. assert latex(Lambda(x, x + 1)) == r"\left( x \mapsto x + 1 \right)"
  1293. assert latex(Lambda((x, y), x + 1)) == r"\left( \left( x, \ y\right) \mapsto x + 1 \right)"
  1294. assert latex(Lambda(x, x)) == r"\left( x \mapsto x \right)"
  1295. def test_latex_PolyElement():
  1296. Ruv, u, v = ring("u,v", ZZ)
  1297. Rxyz, x, y, z = ring("x,y,z", Ruv)
  1298. assert latex(x - x) == r"0"
  1299. assert latex(x - 1) == r"x - 1"
  1300. assert latex(x + 1) == r"x + 1"
  1301. assert latex((u**2 + 3*u*v + 1)*x**2*y + u + 1) == \
  1302. r"\left({u}^{2} + 3 u v + 1\right) {x}^{2} y + u + 1"
  1303. assert latex((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x) == \
  1304. r"\left({u}^{2} + 3 u v + 1\right) {x}^{2} y + \left(u + 1\right) x"
  1305. assert latex((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x + 1) == \
  1306. r"\left({u}^{2} + 3 u v + 1\right) {x}^{2} y + \left(u + 1\right) x + 1"
  1307. assert latex((-u**2 + 3*u*v - 1)*x**2*y - (u + 1)*x - 1) == \
  1308. r"-\left({u}^{2} - 3 u v + 1\right) {x}^{2} y - \left(u + 1\right) x - 1"
  1309. assert latex(-(v**2 + v + 1)*x + 3*u*v + 1) == \
  1310. r"-\left({v}^{2} + v + 1\right) x + 3 u v + 1"
  1311. assert latex(-(v**2 + v + 1)*x - 3*u*v + 1) == \
  1312. r"-\left({v}^{2} + v + 1\right) x - 3 u v + 1"
  1313. def test_latex_FracElement():
  1314. Fuv, u, v = field("u,v", ZZ)
  1315. Fxyzt, x, y, z, t = field("x,y,z,t", Fuv)
  1316. assert latex(x - x) == r"0"
  1317. assert latex(x - 1) == r"x - 1"
  1318. assert latex(x + 1) == r"x + 1"
  1319. assert latex(x/3) == r"\frac{x}{3}"
  1320. assert latex(x/z) == r"\frac{x}{z}"
  1321. assert latex(x*y/z) == r"\frac{x y}{z}"
  1322. assert latex(x/(z*t)) == r"\frac{x}{z t}"
  1323. assert latex(x*y/(z*t)) == r"\frac{x y}{z t}"
  1324. assert latex((x - 1)/y) == r"\frac{x - 1}{y}"
  1325. assert latex((x + 1)/y) == r"\frac{x + 1}{y}"
  1326. assert latex((-x - 1)/y) == r"\frac{-x - 1}{y}"
  1327. assert latex((x + 1)/(y*z)) == r"\frac{x + 1}{y z}"
  1328. assert latex(-y/(x + 1)) == r"\frac{-y}{x + 1}"
  1329. assert latex(y*z/(x + 1)) == r"\frac{y z}{x + 1}"
  1330. assert latex(((u + 1)*x*y + 1)/((v - 1)*z - 1)) == \
  1331. r"\frac{\left(u + 1\right) x y + 1}{\left(v - 1\right) z - 1}"
  1332. assert latex(((u + 1)*x*y + 1)/((v - 1)*z - t*u*v - 1)) == \
  1333. r"\frac{\left(u + 1\right) x y + 1}{\left(v - 1\right) z - u v t - 1}"
  1334. def test_latex_Poly():
  1335. assert latex(Poly(x**2 + 2 * x, x)) == \
  1336. r"\operatorname{Poly}{\left( x^{2} + 2 x, x, domain=\mathbb{Z} \right)}"
  1337. assert latex(Poly(x/y, x)) == \
  1338. r"\operatorname{Poly}{\left( \frac{1}{y} x, x, domain=\mathbb{Z}\left(y\right) \right)}"
  1339. assert latex(Poly(2.0*x + y)) == \
  1340. r"\operatorname{Poly}{\left( 2.0 x + 1.0 y, x, y, domain=\mathbb{R} \right)}"
  1341. def test_latex_Poly_order():
  1342. assert latex(Poly([a, 1, b, 2, c, 3], x)) == \
  1343. r'\operatorname{Poly}{\left( a x^{5} + x^{4} + b x^{3} + 2 x^{2} + c'\
  1344. r' x + 3, x, domain=\mathbb{Z}\left[a, b, c\right] \right)}'
  1345. assert latex(Poly([a, 1, b+c, 2, 3], x)) == \
  1346. r'\operatorname{Poly}{\left( a x^{4} + x^{3} + \left(b + c\right) '\
  1347. r'x^{2} + 2 x + 3, x, domain=\mathbb{Z}\left[a, b, c\right] \right)}'
  1348. assert latex(Poly(a*x**3 + x**2*y - x*y - c*y**3 - b*x*y**2 + y - a*x + b,
  1349. (x, y))) == \
  1350. r'\operatorname{Poly}{\left( a x^{3} + x^{2}y - b xy^{2} - xy - '\
  1351. r'a x - c y^{3} + y + b, x, y, domain=\mathbb{Z}\left[a, b, c\right] \right)}'
  1352. def test_latex_ComplexRootOf():
  1353. assert latex(rootof(x**5 + x + 3, 0)) == \
  1354. r"\operatorname{CRootOf} {\left(x^{5} + x + 3, 0\right)}"
  1355. def test_latex_RootSum():
  1356. assert latex(RootSum(x**5 + x + 3, sin)) == \
  1357. r"\operatorname{RootSum} {\left(x^{5} + x + 3, \left( x \mapsto \sin{\left(x \right)} \right)\right)}"
  1358. def test_settings():
  1359. raises(TypeError, lambda: latex(x*y, method="garbage"))
  1360. def test_latex_numbers():
  1361. assert latex(catalan(n)) == r"C_{n}"
  1362. assert latex(catalan(n)**2) == r"C_{n}^{2}"
  1363. assert latex(bernoulli(n)) == r"B_{n}"
  1364. assert latex(bernoulli(n, x)) == r"B_{n}\left(x\right)"
  1365. assert latex(bernoulli(n)**2) == r"B_{n}^{2}"
  1366. assert latex(bernoulli(n, x)**2) == r"B_{n}^{2}\left(x\right)"
  1367. assert latex(bell(n)) == r"B_{n}"
  1368. assert latex(bell(n, x)) == r"B_{n}\left(x\right)"
  1369. assert latex(bell(n, m, (x, y))) == r"B_{n, m}\left(x, y\right)"
  1370. assert latex(bell(n)**2) == r"B_{n}^{2}"
  1371. assert latex(bell(n, x)**2) == r"B_{n}^{2}\left(x\right)"
  1372. assert latex(bell(n, m, (x, y))**2) == r"B_{n, m}^{2}\left(x, y\right)"
  1373. assert latex(fibonacci(n)) == r"F_{n}"
  1374. assert latex(fibonacci(n, x)) == r"F_{n}\left(x\right)"
  1375. assert latex(fibonacci(n)**2) == r"F_{n}^{2}"
  1376. assert latex(fibonacci(n, x)**2) == r"F_{n}^{2}\left(x\right)"
  1377. assert latex(lucas(n)) == r"L_{n}"
  1378. assert latex(lucas(n)**2) == r"L_{n}^{2}"
  1379. assert latex(tribonacci(n)) == r"T_{n}"
  1380. assert latex(tribonacci(n, x)) == r"T_{n}\left(x\right)"
  1381. assert latex(tribonacci(n)**2) == r"T_{n}^{2}"
  1382. assert latex(tribonacci(n, x)**2) == r"T_{n}^{2}\left(x\right)"
  1383. def test_latex_euler():
  1384. assert latex(euler(n)) == r"E_{n}"
  1385. assert latex(euler(n, x)) == r"E_{n}\left(x\right)"
  1386. assert latex(euler(n, x)**2) == r"E_{n}^{2}\left(x\right)"
  1387. def test_lamda():
  1388. assert latex(Symbol('lamda')) == r"\lambda"
  1389. assert latex(Symbol('Lamda')) == r"\Lambda"
  1390. def test_custom_symbol_names():
  1391. x = Symbol('x')
  1392. y = Symbol('y')
  1393. assert latex(x) == r"x"
  1394. assert latex(x, symbol_names={x: "x_i"}) == r"x_i"
  1395. assert latex(x + y, symbol_names={x: "x_i"}) == r"x_i + y"
  1396. assert latex(x**2, symbol_names={x: "x_i"}) == r"x_i^{2}"
  1397. assert latex(x + y, symbol_names={x: "x_i", y: "y_j"}) == r"x_i + y_j"
  1398. def test_matAdd():
  1399. C = MatrixSymbol('C', 5, 5)
  1400. B = MatrixSymbol('B', 5, 5)
  1401. l = LatexPrinter()
  1402. assert l._print(C - 2*B) in [r'- 2 B + C', r'C -2 B']
  1403. assert l._print(C + 2*B) in [r'2 B + C', r'C + 2 B']
  1404. assert l._print(B - 2*C) in [r'B - 2 C', r'- 2 C + B']
  1405. assert l._print(B + 2*C) in [r'B + 2 C', r'2 C + B']
  1406. def test_matMul():
  1407. A = MatrixSymbol('A', 5, 5)
  1408. B = MatrixSymbol('B', 5, 5)
  1409. x = Symbol('x')
  1410. lp = LatexPrinter()
  1411. assert lp._print_MatMul(2*A) == r'2 A'
  1412. assert lp._print_MatMul(2*x*A) == r'2 x A'
  1413. assert lp._print_MatMul(-2*A) == r'- 2 A'
  1414. assert lp._print_MatMul(1.5*A) == r'1.5 A'
  1415. assert lp._print_MatMul(sqrt(2)*A) == r'\sqrt{2} A'
  1416. assert lp._print_MatMul(-sqrt(2)*A) == r'- \sqrt{2} A'
  1417. assert lp._print_MatMul(2*sqrt(2)*x*A) == r'2 \sqrt{2} x A'
  1418. assert lp._print_MatMul(-2*A*(A + 2*B)) in [r'- 2 A \left(A + 2 B\right)',
  1419. r'- 2 A \left(2 B + A\right)']
  1420. def test_latex_MatrixSlice():
  1421. n = Symbol('n', integer=True)
  1422. x, y, z, w, t, = symbols('x y z w t')
  1423. X = MatrixSymbol('X', n, n)
  1424. Y = MatrixSymbol('Y', 10, 10)
  1425. Z = MatrixSymbol('Z', 10, 10)
  1426. assert latex(MatrixSlice(X, (None, None, None), (None, None, None))) == r'X\left[:, :\right]'
  1427. assert latex(X[x:x + 1, y:y + 1]) == r'X\left[x:x + 1, y:y + 1\right]'
  1428. assert latex(X[x:x + 1:2, y:y + 1:2]) == r'X\left[x:x + 1:2, y:y + 1:2\right]'
  1429. assert latex(X[:x, y:]) == r'X\left[:x, y:\right]'
  1430. assert latex(X[:x, y:]) == r'X\left[:x, y:\right]'
  1431. assert latex(X[x:, :y]) == r'X\left[x:, :y\right]'
  1432. assert latex(X[x:y, z:w]) == r'X\left[x:y, z:w\right]'
  1433. assert latex(X[x:y:t, w:t:x]) == r'X\left[x:y:t, w:t:x\right]'
  1434. assert latex(X[x::y, t::w]) == r'X\left[x::y, t::w\right]'
  1435. assert latex(X[:x:y, :t:w]) == r'X\left[:x:y, :t:w\right]'
  1436. assert latex(X[::x, ::y]) == r'X\left[::x, ::y\right]'
  1437. assert latex(MatrixSlice(X, (0, None, None), (0, None, None))) == r'X\left[:, :\right]'
  1438. assert latex(MatrixSlice(X, (None, n, None), (None, n, None))) == r'X\left[:, :\right]'
  1439. assert latex(MatrixSlice(X, (0, n, None), (0, n, None))) == r'X\left[:, :\right]'
  1440. assert latex(MatrixSlice(X, (0, n, 2), (0, n, 2))) == r'X\left[::2, ::2\right]'
  1441. assert latex(X[1:2:3, 4:5:6]) == r'X\left[1:2:3, 4:5:6\right]'
  1442. assert latex(X[1:3:5, 4:6:8]) == r'X\left[1:3:5, 4:6:8\right]'
  1443. assert latex(X[1:10:2]) == r'X\left[1:10:2, :\right]'
  1444. assert latex(Y[:5, 1:9:2]) == r'Y\left[:5, 1:9:2\right]'
  1445. assert latex(Y[:5, 1:10:2]) == r'Y\left[:5, 1::2\right]'
  1446. assert latex(Y[5, :5:2]) == r'Y\left[5:6, :5:2\right]'
  1447. assert latex(X[0:1, 0:1]) == r'X\left[:1, :1\right]'
  1448. assert latex(X[0:1:2, 0:1:2]) == r'X\left[:1:2, :1:2\right]'
  1449. assert latex((Y + Z)[2:, 2:]) == r'\left(Y + Z\right)\left[2:, 2:\right]'
  1450. def test_latex_RandomDomain():
  1451. from sympy.stats import Normal, Die, Exponential, pspace, where
  1452. from sympy.stats.rv import RandomDomain
  1453. X = Normal('x1', 0, 1)
  1454. assert latex(where(X > 0)) == r"\text{Domain: }0 < x_{1} \wedge x_{1} < \infty"
  1455. D = Die('d1', 6)
  1456. assert latex(where(D > 4)) == r"\text{Domain: }d_{1} = 5 \vee d_{1} = 6"
  1457. A = Exponential('a', 1)
  1458. B = Exponential('b', 1)
  1459. assert latex(
  1460. pspace(Tuple(A, B)).domain) == \
  1461. r"\text{Domain: }0 \leq a \wedge 0 \leq b \wedge a < \infty \wedge b < \infty"
  1462. assert latex(RandomDomain(FiniteSet(x), FiniteSet(1, 2))) == \
  1463. r'\text{Domain: }\left\{x\right\} \in \left\{1, 2\right\}'
  1464. def test_PrettyPoly():
  1465. from sympy.polys.domains import QQ
  1466. F = QQ.frac_field(x, y)
  1467. R = QQ[x, y]
  1468. assert latex(F.convert(x/(x + y))) == latex(x/(x + y))
  1469. assert latex(R.convert(x + y)) == latex(x + y)
  1470. def test_integral_transforms():
  1471. x = Symbol("x")
  1472. k = Symbol("k")
  1473. f = Function("f")
  1474. a = Symbol("a")
  1475. b = Symbol("b")
  1476. assert latex(MellinTransform(f(x), x, k)) == \
  1477. r"\mathcal{M}_{x}\left[f{\left(x \right)}\right]\left(k\right)"
  1478. assert latex(InverseMellinTransform(f(k), k, x, a, b)) == \
  1479. r"\mathcal{M}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)"
  1480. assert latex(LaplaceTransform(f(x), x, k)) == \
  1481. r"\mathcal{L}_{x}\left[f{\left(x \right)}\right]\left(k\right)"
  1482. assert latex(InverseLaplaceTransform(f(k), k, x, (a, b))) == \
  1483. r"\mathcal{L}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)"
  1484. assert latex(FourierTransform(f(x), x, k)) == \
  1485. r"\mathcal{F}_{x}\left[f{\left(x \right)}\right]\left(k\right)"
  1486. assert latex(InverseFourierTransform(f(k), k, x)) == \
  1487. r"\mathcal{F}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)"
  1488. assert latex(CosineTransform(f(x), x, k)) == \
  1489. r"\mathcal{COS}_{x}\left[f{\left(x \right)}\right]\left(k\right)"
  1490. assert latex(InverseCosineTransform(f(k), k, x)) == \
  1491. r"\mathcal{COS}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)"
  1492. assert latex(SineTransform(f(x), x, k)) == \
  1493. r"\mathcal{SIN}_{x}\left[f{\left(x \right)}\right]\left(k\right)"
  1494. assert latex(InverseSineTransform(f(k), k, x)) == \
  1495. r"\mathcal{SIN}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)"
  1496. def test_PolynomialRingBase():
  1497. from sympy.polys.domains import QQ
  1498. assert latex(QQ.old_poly_ring(x, y)) == r"\mathbb{Q}\left[x, y\right]"
  1499. assert latex(QQ.old_poly_ring(x, y, order="ilex")) == \
  1500. r"S_<^{-1}\mathbb{Q}\left[x, y\right]"
  1501. def test_categories():
  1502. from sympy.categories import (Object, IdentityMorphism,
  1503. NamedMorphism, Category, Diagram,
  1504. DiagramGrid)
  1505. A1 = Object("A1")
  1506. A2 = Object("A2")
  1507. A3 = Object("A3")
  1508. f1 = NamedMorphism(A1, A2, "f1")
  1509. f2 = NamedMorphism(A2, A3, "f2")
  1510. id_A1 = IdentityMorphism(A1)
  1511. K1 = Category("K1")
  1512. assert latex(A1) == r"A_{1}"
  1513. assert latex(f1) == r"f_{1}:A_{1}\rightarrow A_{2}"
  1514. assert latex(id_A1) == r"id:A_{1}\rightarrow A_{1}"
  1515. assert latex(f2*f1) == r"f_{2}\circ f_{1}:A_{1}\rightarrow A_{3}"
  1516. assert latex(K1) == r"\mathbf{K_{1}}"
  1517. d = Diagram()
  1518. assert latex(d) == r"\emptyset"
  1519. d = Diagram({f1: "unique", f2: S.EmptySet})
  1520. assert latex(d) == r"\left\{ f_{2}\circ f_{1}:A_{1}" \
  1521. r"\rightarrow A_{3} : \emptyset, \ id:A_{1}\rightarrow " \
  1522. r"A_{1} : \emptyset, \ id:A_{2}\rightarrow A_{2} : " \
  1523. r"\emptyset, \ id:A_{3}\rightarrow A_{3} : \emptyset, " \
  1524. r"\ f_{1}:A_{1}\rightarrow A_{2} : \left\{unique\right\}, " \
  1525. r"\ f_{2}:A_{2}\rightarrow A_{3} : \emptyset\right\}"
  1526. d = Diagram({f1: "unique", f2: S.EmptySet}, {f2 * f1: "unique"})
  1527. assert latex(d) == r"\left\{ f_{2}\circ f_{1}:A_{1}" \
  1528. r"\rightarrow A_{3} : \emptyset, \ id:A_{1}\rightarrow " \
  1529. r"A_{1} : \emptyset, \ id:A_{2}\rightarrow A_{2} : " \
  1530. r"\emptyset, \ id:A_{3}\rightarrow A_{3} : \emptyset, " \
  1531. r"\ f_{1}:A_{1}\rightarrow A_{2} : \left\{unique\right\}," \
  1532. r" \ f_{2}:A_{2}\rightarrow A_{3} : \emptyset\right\}" \
  1533. r"\Longrightarrow \left\{ f_{2}\circ f_{1}:A_{1}" \
  1534. r"\rightarrow A_{3} : \left\{unique\right\}\right\}"
  1535. # A linear diagram.
  1536. A = Object("A")
  1537. B = Object("B")
  1538. C = Object("C")
  1539. f = NamedMorphism(A, B, "f")
  1540. g = NamedMorphism(B, C, "g")
  1541. d = Diagram([f, g])
  1542. grid = DiagramGrid(d)
  1543. assert latex(grid) == r"\begin{array}{cc}" + "\n" \
  1544. r"A & B \\" + "\n" \
  1545. r" & C " + "\n" \
  1546. r"\end{array}" + "\n"
  1547. def test_Modules():
  1548. from sympy.polys.domains import QQ
  1549. from sympy.polys.agca import homomorphism
  1550. R = QQ.old_poly_ring(x, y)
  1551. F = R.free_module(2)
  1552. M = F.submodule([x, y], [1, x**2])
  1553. assert latex(F) == r"{\mathbb{Q}\left[x, y\right]}^{2}"
  1554. assert latex(M) == \
  1555. r"\left\langle {\left[ {x},{y} \right]},{\left[ {1},{x^{2}} \right]} \right\rangle"
  1556. I = R.ideal(x**2, y)
  1557. assert latex(I) == r"\left\langle {x^{2}},{y} \right\rangle"
  1558. Q = F / M
  1559. assert latex(Q) == \
  1560. r"\frac{{\mathbb{Q}\left[x, y\right]}^{2}}{\left\langle {\left[ {x},"\
  1561. r"{y} \right]},{\left[ {1},{x^{2}} \right]} \right\rangle}"
  1562. assert latex(Q.submodule([1, x**3/2], [2, y])) == \
  1563. r"\left\langle {{\left[ {1},{\frac{x^{3}}{2}} \right]} + {\left"\
  1564. r"\langle {\left[ {x},{y} \right]},{\left[ {1},{x^{2}} \right]} "\
  1565. r"\right\rangle}},{{\left[ {2},{y} \right]} + {\left\langle {\left[ "\
  1566. r"{x},{y} \right]},{\left[ {1},{x^{2}} \right]} \right\rangle}} \right\rangle"
  1567. h = homomorphism(QQ.old_poly_ring(x).free_module(2),
  1568. QQ.old_poly_ring(x).free_module(2), [0, 0])
  1569. assert latex(h) == \
  1570. r"{\left[\begin{matrix}0 & 0\\0 & 0\end{matrix}\right]} : "\
  1571. r"{{\mathbb{Q}\left[x\right]}^{2}} \to {{\mathbb{Q}\left[x\right]}^{2}}"
  1572. def test_QuotientRing():
  1573. from sympy.polys.domains import QQ
  1574. R = QQ.old_poly_ring(x)/[x**2 + 1]
  1575. assert latex(R) == \
  1576. r"\frac{\mathbb{Q}\left[x\right]}{\left\langle {x^{2} + 1} \right\rangle}"
  1577. assert latex(R.one) == r"{1} + {\left\langle {x^{2} + 1} \right\rangle}"
  1578. def test_Tr():
  1579. #TODO: Handle indices
  1580. A, B = symbols('A B', commutative=False)
  1581. t = Tr(A*B)
  1582. assert latex(t) == r'\operatorname{tr}\left(A B\right)'
  1583. def test_Adjoint():
  1584. from sympy.matrices import Adjoint, Inverse, Transpose
  1585. X = MatrixSymbol('X', 2, 2)
  1586. Y = MatrixSymbol('Y', 2, 2)
  1587. assert latex(Adjoint(X)) == r'X^{\dagger}'
  1588. assert latex(Adjoint(X + Y)) == r'\left(X + Y\right)^{\dagger}'
  1589. assert latex(Adjoint(X) + Adjoint(Y)) == r'X^{\dagger} + Y^{\dagger}'
  1590. assert latex(Adjoint(X*Y)) == r'\left(X Y\right)^{\dagger}'
  1591. assert latex(Adjoint(Y)*Adjoint(X)) == r'Y^{\dagger} X^{\dagger}'
  1592. assert latex(Adjoint(X**2)) == r'\left(X^{2}\right)^{\dagger}'
  1593. assert latex(Adjoint(X)**2) == r'\left(X^{\dagger}\right)^{2}'
  1594. assert latex(Adjoint(Inverse(X))) == r'\left(X^{-1}\right)^{\dagger}'
  1595. assert latex(Inverse(Adjoint(X))) == r'\left(X^{\dagger}\right)^{-1}'
  1596. assert latex(Adjoint(Transpose(X))) == r'\left(X^{T}\right)^{\dagger}'
  1597. assert latex(Transpose(Adjoint(X))) == r'\left(X^{\dagger}\right)^{T}'
  1598. assert latex(Transpose(Adjoint(X) + Y)) == r'\left(X^{\dagger} + Y\right)^{T}'
  1599. m = Matrix(((1, 2), (3, 4)))
  1600. assert latex(Adjoint(m)) == '\\left[\\begin{matrix}1 & 2\\\\3 & 4\\end{matrix}\\right]^{\\dagger}'
  1601. assert latex(Adjoint(m+X)) == \
  1602. '\\left(\\left[\\begin{matrix}1 & 2\\\\3 & 4\\end{matrix}\\right] + X\\right)^{\\dagger}'
  1603. # Issue 20959
  1604. Mx = MatrixSymbol('M^x', 2, 2)
  1605. assert latex(Adjoint(Mx)) == r'\left(M^{x}\right)^{\dagger}'
  1606. def test_Transpose():
  1607. from sympy.matrices import Transpose, MatPow, HadamardPower
  1608. X = MatrixSymbol('X', 2, 2)
  1609. Y = MatrixSymbol('Y', 2, 2)
  1610. assert latex(Transpose(X)) == r'X^{T}'
  1611. assert latex(Transpose(X + Y)) == r'\left(X + Y\right)^{T}'
  1612. assert latex(Transpose(HadamardPower(X, 2))) == r'\left(X^{\circ {2}}\right)^{T}'
  1613. assert latex(HadamardPower(Transpose(X), 2)) == r'\left(X^{T}\right)^{\circ {2}}'
  1614. assert latex(Transpose(MatPow(X, 2))) == r'\left(X^{2}\right)^{T}'
  1615. assert latex(MatPow(Transpose(X), 2)) == r'\left(X^{T}\right)^{2}'
  1616. m = Matrix(((1, 2), (3, 4)))
  1617. assert latex(Transpose(m)) == '\\left[\\begin{matrix}1 & 2\\\\3 & 4\\end{matrix}\\right]^{T}'
  1618. assert latex(Transpose(m+X)) == \
  1619. '\\left(\\left[\\begin{matrix}1 & 2\\\\3 & 4\\end{matrix}\\right] + X\\right)^{T}'
  1620. # Issue 20959
  1621. Mx = MatrixSymbol('M^x', 2, 2)
  1622. assert latex(Transpose(Mx)) == r'\left(M^{x}\right)^{T}'
  1623. def test_Hadamard():
  1624. from sympy.matrices import HadamardProduct, HadamardPower
  1625. from sympy.matrices.expressions import MatAdd, MatMul, MatPow
  1626. X = MatrixSymbol('X', 2, 2)
  1627. Y = MatrixSymbol('Y', 2, 2)
  1628. assert latex(HadamardProduct(X, Y*Y)) == r'X \circ Y^{2}'
  1629. assert latex(HadamardProduct(X, Y)*Y) == r'\left(X \circ Y\right) Y'
  1630. assert latex(HadamardPower(X, 2)) == r'X^{\circ {2}}'
  1631. assert latex(HadamardPower(X, -1)) == r'X^{\circ \left({-1}\right)}'
  1632. assert latex(HadamardPower(MatAdd(X, Y), 2)) == \
  1633. r'\left(X + Y\right)^{\circ {2}}'
  1634. assert latex(HadamardPower(MatMul(X, Y), 2)) == \
  1635. r'\left(X Y\right)^{\circ {2}}'
  1636. assert latex(HadamardPower(MatPow(X, -1), -1)) == \
  1637. r'\left(X^{-1}\right)^{\circ \left({-1}\right)}'
  1638. assert latex(MatPow(HadamardPower(X, -1), -1)) == \
  1639. r'\left(X^{\circ \left({-1}\right)}\right)^{-1}'
  1640. assert latex(HadamardPower(X, n+1)) == \
  1641. r'X^{\circ \left({n + 1}\right)}'
  1642. def test_MatPow():
  1643. from sympy.matrices.expressions import MatPow
  1644. X = MatrixSymbol('X', 2, 2)
  1645. Y = MatrixSymbol('Y', 2, 2)
  1646. assert latex(MatPow(X, 2)) == 'X^{2}'
  1647. assert latex(MatPow(X*X, 2)) == '\\left(X^{2}\\right)^{2}'
  1648. assert latex(MatPow(X*Y, 2)) == '\\left(X Y\\right)^{2}'
  1649. assert latex(MatPow(X + Y, 2)) == '\\left(X + Y\\right)^{2}'
  1650. assert latex(MatPow(X + X, 2)) == '\\left(2 X\\right)^{2}'
  1651. # Issue 20959
  1652. Mx = MatrixSymbol('M^x', 2, 2)
  1653. assert latex(MatPow(Mx, 2)) == r'\left(M^{x}\right)^{2}'
  1654. def test_ElementwiseApplyFunction():
  1655. X = MatrixSymbol('X', 2, 2)
  1656. expr = (X.T*X).applyfunc(sin)
  1657. assert latex(expr) == r"{\left( d \mapsto \sin{\left(d \right)} \right)}_{\circ}\left({X^{T} X}\right)"
  1658. expr = X.applyfunc(Lambda(x, 1/x))
  1659. assert latex(expr) == r'{\left( x \mapsto \frac{1}{x} \right)}_{\circ}\left({X}\right)'
  1660. def test_ZeroMatrix():
  1661. from sympy.matrices.expressions.special import ZeroMatrix
  1662. assert latex(ZeroMatrix(1, 1), mat_symbol_style='plain') == r"0"
  1663. assert latex(ZeroMatrix(1, 1), mat_symbol_style='bold') == r"\mathbf{0}"
  1664. def test_OneMatrix():
  1665. from sympy.matrices.expressions.special import OneMatrix
  1666. assert latex(OneMatrix(3, 4), mat_symbol_style='plain') == r"1"
  1667. assert latex(OneMatrix(3, 4), mat_symbol_style='bold') == r"\mathbf{1}"
  1668. def test_Identity():
  1669. from sympy.matrices.expressions.special import Identity
  1670. assert latex(Identity(1), mat_symbol_style='plain') == r"\mathbb{I}"
  1671. assert latex(Identity(1), mat_symbol_style='bold') == r"\mathbf{I}"
  1672. def test_latex_DFT_IDFT():
  1673. from sympy.matrices.expressions.fourier import DFT, IDFT
  1674. assert latex(DFT(13)) == r"\text{DFT}_{13}"
  1675. assert latex(IDFT(x)) == r"\text{IDFT}_{x}"
  1676. def test_boolean_args_order():
  1677. syms = symbols('a:f')
  1678. expr = And(*syms)
  1679. assert latex(expr) == r'a \wedge b \wedge c \wedge d \wedge e \wedge f'
  1680. expr = Or(*syms)
  1681. assert latex(expr) == r'a \vee b \vee c \vee d \vee e \vee f'
  1682. expr = Equivalent(*syms)
  1683. assert latex(expr) == \
  1684. r'a \Leftrightarrow b \Leftrightarrow c \Leftrightarrow d \Leftrightarrow e \Leftrightarrow f'
  1685. expr = Xor(*syms)
  1686. assert latex(expr) == \
  1687. r'a \veebar b \veebar c \veebar d \veebar e \veebar f'
  1688. def test_imaginary():
  1689. i = sqrt(-1)
  1690. assert latex(i) == r'i'
  1691. def test_builtins_without_args():
  1692. assert latex(sin) == r'\sin'
  1693. assert latex(cos) == r'\cos'
  1694. assert latex(tan) == r'\tan'
  1695. assert latex(log) == r'\log'
  1696. assert latex(Ei) == r'\operatorname{Ei}'
  1697. assert latex(zeta) == r'\zeta'
  1698. def test_latex_greek_functions():
  1699. # bug because capital greeks that have roman equivalents should not use
  1700. # \Alpha, \Beta, \Eta, etc.
  1701. s = Function('Alpha')
  1702. assert latex(s) == r'A'
  1703. assert latex(s(x)) == r'A{\left(x \right)}'
  1704. s = Function('Beta')
  1705. assert latex(s) == r'B'
  1706. s = Function('Eta')
  1707. assert latex(s) == r'H'
  1708. assert latex(s(x)) == r'H{\left(x \right)}'
  1709. # bug because sympy.core.numbers.Pi is special
  1710. p = Function('Pi')
  1711. # assert latex(p(x)) == r'\Pi{\left(x \right)}'
  1712. assert latex(p) == r'\Pi'
  1713. # bug because not all greeks are included
  1714. c = Function('chi')
  1715. assert latex(c(x)) == r'\chi{\left(x \right)}'
  1716. assert latex(c) == r'\chi'
  1717. def test_translate():
  1718. s = 'Alpha'
  1719. assert translate(s) == r'A'
  1720. s = 'Beta'
  1721. assert translate(s) == r'B'
  1722. s = 'Eta'
  1723. assert translate(s) == r'H'
  1724. s = 'omicron'
  1725. assert translate(s) == r'o'
  1726. s = 'Pi'
  1727. assert translate(s) == r'\Pi'
  1728. s = 'pi'
  1729. assert translate(s) == r'\pi'
  1730. s = 'LamdaHatDOT'
  1731. assert translate(s) == r'\dot{\hat{\Lambda}}'
  1732. def test_other_symbols():
  1733. from sympy.printing.latex import other_symbols
  1734. for s in other_symbols:
  1735. assert latex(symbols(s)) == r"" "\\" + s
  1736. def test_modifiers():
  1737. # Test each modifier individually in the simplest case
  1738. # (with funny capitalizations)
  1739. assert latex(symbols("xMathring")) == r"\mathring{x}"
  1740. assert latex(symbols("xCheck")) == r"\check{x}"
  1741. assert latex(symbols("xBreve")) == r"\breve{x}"
  1742. assert latex(symbols("xAcute")) == r"\acute{x}"
  1743. assert latex(symbols("xGrave")) == r"\grave{x}"
  1744. assert latex(symbols("xTilde")) == r"\tilde{x}"
  1745. assert latex(symbols("xPrime")) == r"{x}'"
  1746. assert latex(symbols("xddDDot")) == r"\ddddot{x}"
  1747. assert latex(symbols("xDdDot")) == r"\dddot{x}"
  1748. assert latex(symbols("xDDot")) == r"\ddot{x}"
  1749. assert latex(symbols("xBold")) == r"\boldsymbol{x}"
  1750. assert latex(symbols("xnOrM")) == r"\left\|{x}\right\|"
  1751. assert latex(symbols("xAVG")) == r"\left\langle{x}\right\rangle"
  1752. assert latex(symbols("xHat")) == r"\hat{x}"
  1753. assert latex(symbols("xDot")) == r"\dot{x}"
  1754. assert latex(symbols("xBar")) == r"\bar{x}"
  1755. assert latex(symbols("xVec")) == r"\vec{x}"
  1756. assert latex(symbols("xAbs")) == r"\left|{x}\right|"
  1757. assert latex(symbols("xMag")) == r"\left|{x}\right|"
  1758. assert latex(symbols("xPrM")) == r"{x}'"
  1759. assert latex(symbols("xBM")) == r"\boldsymbol{x}"
  1760. # Test strings that are *only* the names of modifiers
  1761. assert latex(symbols("Mathring")) == r"Mathring"
  1762. assert latex(symbols("Check")) == r"Check"
  1763. assert latex(symbols("Breve")) == r"Breve"
  1764. assert latex(symbols("Acute")) == r"Acute"
  1765. assert latex(symbols("Grave")) == r"Grave"
  1766. assert latex(symbols("Tilde")) == r"Tilde"
  1767. assert latex(symbols("Prime")) == r"Prime"
  1768. assert latex(symbols("DDot")) == r"\dot{D}"
  1769. assert latex(symbols("Bold")) == r"Bold"
  1770. assert latex(symbols("NORm")) == r"NORm"
  1771. assert latex(symbols("AVG")) == r"AVG"
  1772. assert latex(symbols("Hat")) == r"Hat"
  1773. assert latex(symbols("Dot")) == r"Dot"
  1774. assert latex(symbols("Bar")) == r"Bar"
  1775. assert latex(symbols("Vec")) == r"Vec"
  1776. assert latex(symbols("Abs")) == r"Abs"
  1777. assert latex(symbols("Mag")) == r"Mag"
  1778. assert latex(symbols("PrM")) == r"PrM"
  1779. assert latex(symbols("BM")) == r"BM"
  1780. assert latex(symbols("hbar")) == r"\hbar"
  1781. # Check a few combinations
  1782. assert latex(symbols("xvecdot")) == r"\dot{\vec{x}}"
  1783. assert latex(symbols("xDotVec")) == r"\vec{\dot{x}}"
  1784. assert latex(symbols("xHATNorm")) == r"\left\|{\hat{x}}\right\|"
  1785. # Check a couple big, ugly combinations
  1786. assert latex(symbols('xMathringBm_yCheckPRM__zbreveAbs')) == \
  1787. r"\boldsymbol{\mathring{x}}^{\left|{\breve{z}}\right|}_{{\check{y}}'}"
  1788. assert latex(symbols('alphadothat_nVECDOT__tTildePrime')) == \
  1789. r"\hat{\dot{\alpha}}^{{\tilde{t}}'}_{\dot{\vec{n}}}"
  1790. def test_greek_symbols():
  1791. assert latex(Symbol('alpha')) == r'\alpha'
  1792. assert latex(Symbol('beta')) == r'\beta'
  1793. assert latex(Symbol('gamma')) == r'\gamma'
  1794. assert latex(Symbol('delta')) == r'\delta'
  1795. assert latex(Symbol('epsilon')) == r'\epsilon'
  1796. assert latex(Symbol('zeta')) == r'\zeta'
  1797. assert latex(Symbol('eta')) == r'\eta'
  1798. assert latex(Symbol('theta')) == r'\theta'
  1799. assert latex(Symbol('iota')) == r'\iota'
  1800. assert latex(Symbol('kappa')) == r'\kappa'
  1801. assert latex(Symbol('lambda')) == r'\lambda'
  1802. assert latex(Symbol('mu')) == r'\mu'
  1803. assert latex(Symbol('nu')) == r'\nu'
  1804. assert latex(Symbol('xi')) == r'\xi'
  1805. assert latex(Symbol('omicron')) == r'o'
  1806. assert latex(Symbol('pi')) == r'\pi'
  1807. assert latex(Symbol('rho')) == r'\rho'
  1808. assert latex(Symbol('sigma')) == r'\sigma'
  1809. assert latex(Symbol('tau')) == r'\tau'
  1810. assert latex(Symbol('upsilon')) == r'\upsilon'
  1811. assert latex(Symbol('phi')) == r'\phi'
  1812. assert latex(Symbol('chi')) == r'\chi'
  1813. assert latex(Symbol('psi')) == r'\psi'
  1814. assert latex(Symbol('omega')) == r'\omega'
  1815. assert latex(Symbol('Alpha')) == r'A'
  1816. assert latex(Symbol('Beta')) == r'B'
  1817. assert latex(Symbol('Gamma')) == r'\Gamma'
  1818. assert latex(Symbol('Delta')) == r'\Delta'
  1819. assert latex(Symbol('Epsilon')) == r'E'
  1820. assert latex(Symbol('Zeta')) == r'Z'
  1821. assert latex(Symbol('Eta')) == r'H'
  1822. assert latex(Symbol('Theta')) == r'\Theta'
  1823. assert latex(Symbol('Iota')) == r'I'
  1824. assert latex(Symbol('Kappa')) == r'K'
  1825. assert latex(Symbol('Lambda')) == r'\Lambda'
  1826. assert latex(Symbol('Mu')) == r'M'
  1827. assert latex(Symbol('Nu')) == r'N'
  1828. assert latex(Symbol('Xi')) == r'\Xi'
  1829. assert latex(Symbol('Omicron')) == r'O'
  1830. assert latex(Symbol('Pi')) == r'\Pi'
  1831. assert latex(Symbol('Rho')) == r'P'
  1832. assert latex(Symbol('Sigma')) == r'\Sigma'
  1833. assert latex(Symbol('Tau')) == r'T'
  1834. assert latex(Symbol('Upsilon')) == r'\Upsilon'
  1835. assert latex(Symbol('Phi')) == r'\Phi'
  1836. assert latex(Symbol('Chi')) == r'X'
  1837. assert latex(Symbol('Psi')) == r'\Psi'
  1838. assert latex(Symbol('Omega')) == r'\Omega'
  1839. assert latex(Symbol('varepsilon')) == r'\varepsilon'
  1840. assert latex(Symbol('varkappa')) == r'\varkappa'
  1841. assert latex(Symbol('varphi')) == r'\varphi'
  1842. assert latex(Symbol('varpi')) == r'\varpi'
  1843. assert latex(Symbol('varrho')) == r'\varrho'
  1844. assert latex(Symbol('varsigma')) == r'\varsigma'
  1845. assert latex(Symbol('vartheta')) == r'\vartheta'
  1846. def test_fancyset_symbols():
  1847. assert latex(S.Rationals) == r'\mathbb{Q}'
  1848. assert latex(S.Naturals) == r'\mathbb{N}'
  1849. assert latex(S.Naturals0) == r'\mathbb{N}_0'
  1850. assert latex(S.Integers) == r'\mathbb{Z}'
  1851. assert latex(S.Reals) == r'\mathbb{R}'
  1852. assert latex(S.Complexes) == r'\mathbb{C}'
  1853. @XFAIL
  1854. def test_builtin_without_args_mismatched_names():
  1855. assert latex(CosineTransform) == r'\mathcal{COS}'
  1856. def test_builtin_no_args():
  1857. assert latex(Chi) == r'\operatorname{Chi}'
  1858. assert latex(beta) == r'\operatorname{B}'
  1859. assert latex(gamma) == r'\Gamma'
  1860. assert latex(KroneckerDelta) == r'\delta'
  1861. assert latex(DiracDelta) == r'\delta'
  1862. assert latex(lowergamma) == r'\gamma'
  1863. def test_issue_6853():
  1864. p = Function('Pi')
  1865. assert latex(p(x)) == r"\Pi{\left(x \right)}"
  1866. def test_Mul():
  1867. e = Mul(-2, x + 1, evaluate=False)
  1868. assert latex(e) == r'- 2 \left(x + 1\right)'
  1869. e = Mul(2, x + 1, evaluate=False)
  1870. assert latex(e) == r'2 \left(x + 1\right)'
  1871. e = Mul(S.Half, x + 1, evaluate=False)
  1872. assert latex(e) == r'\frac{x + 1}{2}'
  1873. e = Mul(y, x + 1, evaluate=False)
  1874. assert latex(e) == r'y \left(x + 1\right)'
  1875. e = Mul(-y, x + 1, evaluate=False)
  1876. assert latex(e) == r'- y \left(x + 1\right)'
  1877. e = Mul(-2, x + 1)
  1878. assert latex(e) == r'- 2 x - 2'
  1879. e = Mul(2, x + 1)
  1880. assert latex(e) == r'2 x + 2'
  1881. def test_Pow():
  1882. e = Pow(2, 2, evaluate=False)
  1883. assert latex(e) == r'2^{2}'
  1884. assert latex(x**(Rational(-1, 3))) == r'\frac{1}{\sqrt[3]{x}}'
  1885. x2 = Symbol(r'x^2')
  1886. assert latex(x2**2) == r'\left(x^{2}\right)^{2}'
  1887. def test_issue_7180():
  1888. assert latex(Equivalent(x, y)) == r"x \Leftrightarrow y"
  1889. assert latex(Not(Equivalent(x, y))) == r"x \not\Leftrightarrow y"
  1890. def test_issue_8409():
  1891. assert latex(S.Half**n) == r"\left(\frac{1}{2}\right)^{n}"
  1892. def test_issue_8470():
  1893. from sympy.parsing.sympy_parser import parse_expr
  1894. e = parse_expr("-B*A", evaluate=False)
  1895. assert latex(e) == r"A \left(- B\right)"
  1896. def test_issue_15439():
  1897. x = MatrixSymbol('x', 2, 2)
  1898. y = MatrixSymbol('y', 2, 2)
  1899. assert latex((x * y).subs(y, -y)) == r"x \left(- y\right)"
  1900. assert latex((x * y).subs(y, -2*y)) == r"x \left(- 2 y\right)"
  1901. assert latex((x * y).subs(x, -x)) == r"- x y"
  1902. def test_issue_2934():
  1903. assert latex(Symbol(r'\frac{a_1}{b_1}')) == r'\frac{a_1}{b_1}'
  1904. def test_issue_10489():
  1905. latexSymbolWithBrace = r'C_{x_{0}}'
  1906. s = Symbol(latexSymbolWithBrace)
  1907. assert latex(s) == latexSymbolWithBrace
  1908. assert latex(cos(s)) == r'\cos{\left(C_{x_{0}} \right)}'
  1909. def test_issue_12886():
  1910. m__1, l__1 = symbols('m__1, l__1')
  1911. assert latex(m__1**2 + l__1**2) == \
  1912. r'\left(l^{1}\right)^{2} + \left(m^{1}\right)^{2}'
  1913. def test_issue_13559():
  1914. from sympy.parsing.sympy_parser import parse_expr
  1915. expr = parse_expr('5/1', evaluate=False)
  1916. assert latex(expr) == r"\frac{5}{1}"
  1917. def test_issue_13651():
  1918. expr = c + Mul(-1, a + b, evaluate=False)
  1919. assert latex(expr) == r"c - \left(a + b\right)"
  1920. def test_latex_UnevaluatedExpr():
  1921. x = symbols("x")
  1922. he = UnevaluatedExpr(1/x)
  1923. assert latex(he) == latex(1/x) == r"\frac{1}{x}"
  1924. assert latex(he**2) == r"\left(\frac{1}{x}\right)^{2}"
  1925. assert latex(he + 1) == r"1 + \frac{1}{x}"
  1926. assert latex(x*he) == r"x \frac{1}{x}"
  1927. def test_MatrixElement_printing():
  1928. # test cases for issue #11821
  1929. A = MatrixSymbol("A", 1, 3)
  1930. B = MatrixSymbol("B", 1, 3)
  1931. C = MatrixSymbol("C", 1, 3)
  1932. assert latex(A[0, 0]) == r"A_{0, 0}"
  1933. assert latex(3 * A[0, 0]) == r"3 A_{0, 0}"
  1934. F = C[0, 0].subs(C, A - B)
  1935. assert latex(F) == r"\left(A - B\right)_{0, 0}"
  1936. i, j, k = symbols("i j k")
  1937. M = MatrixSymbol("M", k, k)
  1938. N = MatrixSymbol("N", k, k)
  1939. assert latex((M*N)[i, j]) == \
  1940. r'\sum_{i_{1}=0}^{k - 1} M_{i, i_{1}} N_{i_{1}, j}'
  1941. def test_MatrixSymbol_printing():
  1942. # test cases for issue #14237
  1943. A = MatrixSymbol("A", 3, 3)
  1944. B = MatrixSymbol("B", 3, 3)
  1945. C = MatrixSymbol("C", 3, 3)
  1946. assert latex(-A) == r"- A"
  1947. assert latex(A - A*B - B) == r"A - A B - B"
  1948. assert latex(-A*B - A*B*C - B) == r"- A B - A B C - B"
  1949. def test_KroneckerProduct_printing():
  1950. A = MatrixSymbol('A', 3, 3)
  1951. B = MatrixSymbol('B', 2, 2)
  1952. assert latex(KroneckerProduct(A, B)) == r'A \otimes B'
  1953. def test_Series_printing():
  1954. tf1 = TransferFunction(x*y**2 - z, y**3 - t**3, y)
  1955. tf2 = TransferFunction(x - y, x + y, y)
  1956. tf3 = TransferFunction(t*x**2 - t**w*x + w, t - y, y)
  1957. assert latex(Series(tf1, tf2)) == \
  1958. r'\left(\frac{x y^{2} - z}{- t^{3} + y^{3}}\right) \left(\frac{x - y}{x + y}\right)'
  1959. assert latex(Series(tf1, tf2, tf3)) == \
  1960. r'\left(\frac{x y^{2} - z}{- t^{3} + y^{3}}\right) \left(\frac{x - y}{x + y}\right) \left(\frac{t x^{2} - t^{w} x + w}{t - y}\right)'
  1961. assert latex(Series(-tf2, tf1)) == \
  1962. r'\left(\frac{- x + y}{x + y}\right) \left(\frac{x y^{2} - z}{- t^{3} + y^{3}}\right)'
  1963. M_1 = Matrix([[5/s], [5/(2*s)]])
  1964. T_1 = TransferFunctionMatrix.from_Matrix(M_1, s)
  1965. M_2 = Matrix([[5, 6*s**3]])
  1966. T_2 = TransferFunctionMatrix.from_Matrix(M_2, s)
  1967. # Brackets
  1968. assert latex(T_1*(T_2 + T_2)) == \
  1969. r'\left[\begin{matrix}\frac{5}{s}\\\frac{5}{2 s}\end{matrix}\right]_\tau\cdot\left(\left[\begin{matrix}\frac{5}{1} &' \
  1970. r' \frac{6 s^{3}}{1}\end{matrix}\right]_\tau + \left[\begin{matrix}\frac{5}{1} & \frac{6 s^{3}}{1}\end{matrix}\right]_\tau\right)' \
  1971. == latex(MIMOSeries(MIMOParallel(T_2, T_2), T_1))
  1972. # No Brackets
  1973. M_3 = Matrix([[5, 6], [6, 5/s]])
  1974. T_3 = TransferFunctionMatrix.from_Matrix(M_3, s)
  1975. assert latex(T_1*T_2 + T_3) == r'\left[\begin{matrix}\frac{5}{s}\\\frac{5}{2 s}\end{matrix}\right]_\tau\cdot\left[\begin{matrix}' \
  1976. r'\frac{5}{1} & \frac{6 s^{3}}{1}\end{matrix}\right]_\tau + \left[\begin{matrix}\frac{5}{1} & \frac{6}{1}\\\frac{6}{1} & ' \
  1977. r'\frac{5}{s}\end{matrix}\right]_\tau' == latex(MIMOParallel(MIMOSeries(T_2, T_1), T_3))
  1978. def test_TransferFunction_printing():
  1979. tf1 = TransferFunction(x - 1, x + 1, x)
  1980. assert latex(tf1) == r"\frac{x - 1}{x + 1}"
  1981. tf2 = TransferFunction(x + 1, 2 - y, x)
  1982. assert latex(tf2) == r"\frac{x + 1}{2 - y}"
  1983. tf3 = TransferFunction(y, y**2 + 2*y + 3, y)
  1984. assert latex(tf3) == r"\frac{y}{y^{2} + 2 y + 3}"
  1985. def test_Parallel_printing():
  1986. tf1 = TransferFunction(x*y**2 - z, y**3 - t**3, y)
  1987. tf2 = TransferFunction(x - y, x + y, y)
  1988. assert latex(Parallel(tf1, tf2)) == \
  1989. r'\frac{x y^{2} - z}{- t^{3} + y^{3}} + \frac{x - y}{x + y}'
  1990. assert latex(Parallel(-tf2, tf1)) == \
  1991. r'\frac{- x + y}{x + y} + \frac{x y^{2} - z}{- t^{3} + y^{3}}'
  1992. M_1 = Matrix([[5, 6], [6, 5/s]])
  1993. T_1 = TransferFunctionMatrix.from_Matrix(M_1, s)
  1994. M_2 = Matrix([[5/s, 6], [6, 5/(s - 1)]])
  1995. T_2 = TransferFunctionMatrix.from_Matrix(M_2, s)
  1996. M_3 = Matrix([[6, 5/(s*(s - 1))], [5, 6]])
  1997. T_3 = TransferFunctionMatrix.from_Matrix(M_3, s)
  1998. assert latex(T_1 + T_2 + T_3) == r'\left[\begin{matrix}\frac{5}{1} & \frac{6}{1}\\\frac{6}{1} & \frac{5}{s}\end{matrix}\right]' \
  1999. r'_\tau + \left[\begin{matrix}\frac{5}{s} & \frac{6}{1}\\\frac{6}{1} & \frac{5}{s - 1}\end{matrix}\right]_\tau + \left[\begin{matrix}' \
  2000. r'\frac{6}{1} & \frac{5}{s \left(s - 1\right)}\\\frac{5}{1} & \frac{6}{1}\end{matrix}\right]_\tau' \
  2001. == latex(MIMOParallel(T_1, T_2, T_3)) == latex(MIMOParallel(T_1, MIMOParallel(T_2, T_3))) == latex(MIMOParallel(MIMOParallel(T_1, T_2), T_3))
  2002. def test_TransferFunctionMatrix_printing():
  2003. tf1 = TransferFunction(p, p + x, p)
  2004. tf2 = TransferFunction(-s + p, p + s, p)
  2005. tf3 = TransferFunction(p, y**2 + 2*y + 3, p)
  2006. assert latex(TransferFunctionMatrix([[tf1], [tf2]])) == \
  2007. r'\left[\begin{matrix}\frac{p}{p + x}\\\frac{p - s}{p + s}\end{matrix}\right]_\tau'
  2008. assert latex(TransferFunctionMatrix([[tf1, tf2], [tf3, -tf1]])) == \
  2009. r'\left[\begin{matrix}\frac{p}{p + x} & \frac{p - s}{p + s}\\\frac{p}{y^{2} + 2 y + 3} & \frac{\left(-1\right) p}{p + x}\end{matrix}\right]_\tau'
  2010. def test_Feedback_printing():
  2011. tf1 = TransferFunction(p, p + x, p)
  2012. tf2 = TransferFunction(-s + p, p + s, p)
  2013. # Negative Feedback (Default)
  2014. assert latex(Feedback(tf1, tf2)) == \
  2015. r'\frac{\frac{p}{p + x}}{\frac{1}{1} + \left(\frac{p}{p + x}\right) \left(\frac{p - s}{p + s}\right)}'
  2016. assert latex(Feedback(tf1*tf2, TransferFunction(1, 1, p))) == \
  2017. r'\frac{\left(\frac{p}{p + x}\right) \left(\frac{p - s}{p + s}\right)}{\frac{1}{1} + \left(\frac{p}{p + x}\right) \left(\frac{p - s}{p + s}\right)}'
  2018. # Positive Feedback
  2019. assert latex(Feedback(tf1, tf2, 1)) == \
  2020. r'\frac{\frac{p}{p + x}}{\frac{1}{1} - \left(\frac{p}{p + x}\right) \left(\frac{p - s}{p + s}\right)}'
  2021. assert latex(Feedback(tf1*tf2, sign=1)) == \
  2022. r'\frac{\left(\frac{p}{p + x}\right) \left(\frac{p - s}{p + s}\right)}{\frac{1}{1} - \left(\frac{p}{p + x}\right) \left(\frac{p - s}{p + s}\right)}'
  2023. def test_MIMOFeedback_printing():
  2024. tf1 = TransferFunction(1, s, s)
  2025. tf2 = TransferFunction(s, s**2 - 1, s)
  2026. tf3 = TransferFunction(s, s - 1, s)
  2027. tf4 = TransferFunction(s**2, s**2 - 1, s)
  2028. tfm_1 = TransferFunctionMatrix([[tf1, tf2], [tf3, tf4]])
  2029. tfm_2 = TransferFunctionMatrix([[tf4, tf3], [tf2, tf1]])
  2030. # Negative Feedback (Default)
  2031. assert latex(MIMOFeedback(tfm_1, tfm_2)) == \
  2032. r'\left(I_{\tau} + \left[\begin{matrix}\frac{1}{s} & \frac{s}{s^{2} - 1}\\\frac{s}{s - 1} & \frac{s^{2}}{s^{2} - 1}\end{matrix}\right]_\tau\cdot\left[' \
  2033. r'\begin{matrix}\frac{s^{2}}{s^{2} - 1} & \frac{s}{s - 1}\\\frac{s}{s^{2} - 1} & \frac{1}{s}\end{matrix}\right]_\tau\right)^{-1} \cdot \left[\begin{matrix}' \
  2034. r'\frac{1}{s} & \frac{s}{s^{2} - 1}\\\frac{s}{s - 1} & \frac{s^{2}}{s^{2} - 1}\end{matrix}\right]_\tau'
  2035. # Positive Feedback
  2036. assert latex(MIMOFeedback(tfm_1*tfm_2, tfm_1, 1)) == \
  2037. r'\left(I_{\tau} - \left[\begin{matrix}\frac{1}{s} & \frac{s}{s^{2} - 1}\\\frac{s}{s - 1} & \frac{s^{2}}{s^{2} - 1}\end{matrix}\right]_\tau\cdot\left' \
  2038. r'[\begin{matrix}\frac{s^{2}}{s^{2} - 1} & \frac{s}{s - 1}\\\frac{s}{s^{2} - 1} & \frac{1}{s}\end{matrix}\right]_\tau\cdot\left[\begin{matrix}\frac{1}{s} & \frac{s}{s^{2} - 1}' \
  2039. r'\\\frac{s}{s - 1} & \frac{s^{2}}{s^{2} - 1}\end{matrix}\right]_\tau\right)^{-1} \cdot \left[\begin{matrix}\frac{1}{s} & \frac{s}{s^{2} - 1}' \
  2040. r'\\\frac{s}{s - 1} & \frac{s^{2}}{s^{2} - 1}\end{matrix}\right]_\tau\cdot\left[\begin{matrix}\frac{s^{2}}{s^{2} - 1} & \frac{s}{s - 1}\\\frac{s}{s^{2} - 1}' \
  2041. r' & \frac{1}{s}\end{matrix}\right]_\tau'
  2042. def test_Quaternion_latex_printing():
  2043. q = Quaternion(x, y, z, t)
  2044. assert latex(q) == r"x + y i + z j + t k"
  2045. q = Quaternion(x, y, z, x*t)
  2046. assert latex(q) == r"x + y i + z j + t x k"
  2047. q = Quaternion(x, y, z, x + t)
  2048. assert latex(q) == r"x + y i + z j + \left(t + x\right) k"
  2049. def test_TensorProduct_printing():
  2050. from sympy.tensor.functions import TensorProduct
  2051. A = MatrixSymbol("A", 3, 3)
  2052. B = MatrixSymbol("B", 3, 3)
  2053. assert latex(TensorProduct(A, B)) == r"A \otimes B"
  2054. def test_WedgeProduct_printing():
  2055. from sympy.diffgeom.rn import R2
  2056. from sympy.diffgeom import WedgeProduct
  2057. wp = WedgeProduct(R2.dx, R2.dy)
  2058. assert latex(wp) == r"\operatorname{d}x \wedge \operatorname{d}y"
  2059. def test_issue_9216():
  2060. expr_1 = Pow(1, -1, evaluate=False)
  2061. assert latex(expr_1) == r"1^{-1}"
  2062. expr_2 = Pow(1, Pow(1, -1, evaluate=False), evaluate=False)
  2063. assert latex(expr_2) == r"1^{1^{-1}}"
  2064. expr_3 = Pow(3, -2, evaluate=False)
  2065. assert latex(expr_3) == r"\frac{1}{9}"
  2066. expr_4 = Pow(1, -2, evaluate=False)
  2067. assert latex(expr_4) == r"1^{-2}"
  2068. def test_latex_printer_tensor():
  2069. from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead, tensor_heads
  2070. L = TensorIndexType("L")
  2071. i, j, k, l = tensor_indices("i j k l", L)
  2072. i0 = tensor_indices("i_0", L)
  2073. A, B, C, D = tensor_heads("A B C D", [L])
  2074. H = TensorHead("H", [L, L])
  2075. K = TensorHead("K", [L, L, L, L])
  2076. assert latex(i) == r"{}^{i}"
  2077. assert latex(-i) == r"{}_{i}"
  2078. expr = A(i)
  2079. assert latex(expr) == r"A{}^{i}"
  2080. expr = A(i0)
  2081. assert latex(expr) == r"A{}^{i_{0}}"
  2082. expr = A(-i)
  2083. assert latex(expr) == r"A{}_{i}"
  2084. expr = -3*A(i)
  2085. assert latex(expr) == r"-3A{}^{i}"
  2086. expr = K(i, j, -k, -i0)
  2087. assert latex(expr) == r"K{}^{ij}{}_{ki_{0}}"
  2088. expr = K(i, -j, -k, i0)
  2089. assert latex(expr) == r"K{}^{i}{}_{jk}{}^{i_{0}}"
  2090. expr = K(i, -j, k, -i0)
  2091. assert latex(expr) == r"K{}^{i}{}_{j}{}^{k}{}_{i_{0}}"
  2092. expr = H(i, -j)
  2093. assert latex(expr) == r"H{}^{i}{}_{j}"
  2094. expr = H(i, j)
  2095. assert latex(expr) == r"H{}^{ij}"
  2096. expr = H(-i, -j)
  2097. assert latex(expr) == r"H{}_{ij}"
  2098. expr = (1+x)*A(i)
  2099. assert latex(expr) == r"\left(x + 1\right)A{}^{i}"
  2100. expr = H(i, -i)
  2101. assert latex(expr) == r"H{}^{L_{0}}{}_{L_{0}}"
  2102. expr = H(i, -j)*A(j)*B(k)
  2103. assert latex(expr) == r"H{}^{i}{}_{L_{0}}A{}^{L_{0}}B{}^{k}"
  2104. expr = A(i) + 3*B(i)
  2105. assert latex(expr) == r"3B{}^{i} + A{}^{i}"
  2106. # Test ``TensorElement``:
  2107. from sympy.tensor.tensor import TensorElement
  2108. expr = TensorElement(K(i, j, k, l), {i: 3, k: 2})
  2109. assert latex(expr) == r'K{}^{i=3,j,k=2,l}'
  2110. expr = TensorElement(K(i, j, k, l), {i: 3})
  2111. assert latex(expr) == r'K{}^{i=3,jkl}'
  2112. expr = TensorElement(K(i, -j, k, l), {i: 3, k: 2})
  2113. assert latex(expr) == r'K{}^{i=3}{}_{j}{}^{k=2,l}'
  2114. expr = TensorElement(K(i, -j, k, -l), {i: 3, k: 2})
  2115. assert latex(expr) == r'K{}^{i=3}{}_{j}{}^{k=2}{}_{l}'
  2116. expr = TensorElement(K(i, j, -k, -l), {i: 3, -k: 2})
  2117. assert latex(expr) == r'K{}^{i=3,j}{}_{k=2,l}'
  2118. expr = TensorElement(K(i, j, -k, -l), {i: 3})
  2119. assert latex(expr) == r'K{}^{i=3,j}{}_{kl}'
  2120. expr = PartialDerivative(A(i), A(i))
  2121. assert latex(expr) == r"\frac{\partial}{\partial {A{}^{L_{0}}}}{A{}^{L_{0}}}"
  2122. expr = PartialDerivative(A(-i), A(-j))
  2123. assert latex(expr) == r"\frac{\partial}{\partial {A{}_{j}}}{A{}_{i}}"
  2124. expr = PartialDerivative(K(i, j, -k, -l), A(m), A(-n))
  2125. assert latex(expr) == r"\frac{\partial^{2}}{\partial {A{}^{m}} \partial {A{}_{n}}}{K{}^{ij}{}_{kl}}"
  2126. expr = PartialDerivative(B(-i) + A(-i), A(-j), A(-n))
  2127. assert latex(expr) == r"\frac{\partial^{2}}{\partial {A{}_{j}} \partial {A{}_{n}}}{\left(A{}_{i} + B{}_{i}\right)}"
  2128. expr = PartialDerivative(3*A(-i), A(-j), A(-n))
  2129. assert latex(expr) == r"\frac{\partial^{2}}{\partial {A{}_{j}} \partial {A{}_{n}}}{\left(3A{}_{i}\right)}"
  2130. def test_multiline_latex():
  2131. a, b, c, d, e, f = symbols('a b c d e f')
  2132. expr = -a + 2*b -3*c +4*d -5*e
  2133. expected = r"\begin{eqnarray}" + "\n"\
  2134. r"f & = &- a \nonumber\\" + "\n"\
  2135. r"& & + 2 b \nonumber\\" + "\n"\
  2136. r"& & - 3 c \nonumber\\" + "\n"\
  2137. r"& & + 4 d \nonumber\\" + "\n"\
  2138. r"& & - 5 e " + "\n"\
  2139. r"\end{eqnarray}"
  2140. assert multiline_latex(f, expr, environment="eqnarray") == expected
  2141. expected2 = r'\begin{eqnarray}' + '\n'\
  2142. r'f & = &- a + 2 b \nonumber\\' + '\n'\
  2143. r'& & - 3 c + 4 d \nonumber\\' + '\n'\
  2144. r'& & - 5 e ' + '\n'\
  2145. r'\end{eqnarray}'
  2146. assert multiline_latex(f, expr, 2, environment="eqnarray") == expected2
  2147. expected3 = r'\begin{eqnarray}' + '\n'\
  2148. r'f & = &- a + 2 b - 3 c \nonumber\\'+ '\n'\
  2149. r'& & + 4 d - 5 e ' + '\n'\
  2150. r'\end{eqnarray}'
  2151. assert multiline_latex(f, expr, 3, environment="eqnarray") == expected3
  2152. expected3dots = r'\begin{eqnarray}' + '\n'\
  2153. r'f & = &- a + 2 b - 3 c \dots\nonumber\\'+ '\n'\
  2154. r'& & + 4 d - 5 e ' + '\n'\
  2155. r'\end{eqnarray}'
  2156. assert multiline_latex(f, expr, 3, environment="eqnarray", use_dots=True) == expected3dots
  2157. expected3align = r'\begin{align*}' + '\n'\
  2158. r'f = &- a + 2 b - 3 c \\'+ '\n'\
  2159. r'& + 4 d - 5 e ' + '\n'\
  2160. r'\end{align*}'
  2161. assert multiline_latex(f, expr, 3) == expected3align
  2162. assert multiline_latex(f, expr, 3, environment='align*') == expected3align
  2163. expected2ieee = r'\begin{IEEEeqnarray}{rCl}' + '\n'\
  2164. r'f & = &- a + 2 b \nonumber\\' + '\n'\
  2165. r'& & - 3 c + 4 d \nonumber\\' + '\n'\
  2166. r'& & - 5 e ' + '\n'\
  2167. r'\end{IEEEeqnarray}'
  2168. assert multiline_latex(f, expr, 2, environment="IEEEeqnarray") == expected2ieee
  2169. raises(ValueError, lambda: multiline_latex(f, expr, environment="foo"))
  2170. def test_issue_15353():
  2171. a, x = symbols('a x')
  2172. # Obtained from nonlinsolve([(sin(a*x)),cos(a*x)],[x,a])
  2173. sol = ConditionSet(
  2174. Tuple(x, a), Eq(sin(a*x), 0) & Eq(cos(a*x), 0), S.Complexes**2)
  2175. assert latex(sol) == \
  2176. r'\left\{\left( x, \ a\right)\; \middle|\; \left( x, \ a\right) \in ' \
  2177. r'\mathbb{C}^{2} \wedge \sin{\left(a x \right)} = 0 \wedge ' \
  2178. r'\cos{\left(a x \right)} = 0 \right\}'
  2179. def test_latex_symbolic_probability():
  2180. mu = symbols("mu")
  2181. sigma = symbols("sigma", positive=True)
  2182. X = Normal("X", mu, sigma)
  2183. assert latex(Expectation(X)) == r'\operatorname{E}\left[X\right]'
  2184. assert latex(Variance(X)) == r'\operatorname{Var}\left(X\right)'
  2185. assert latex(Probability(X > 0)) == r'\operatorname{P}\left(X > 0\right)'
  2186. Y = Normal("Y", mu, sigma)
  2187. assert latex(Covariance(X, Y)) == r'\operatorname{Cov}\left(X, Y\right)'
  2188. def test_trace():
  2189. # Issue 15303
  2190. from sympy.matrices.expressions.trace import trace
  2191. A = MatrixSymbol("A", 2, 2)
  2192. assert latex(trace(A)) == r"\operatorname{tr}\left(A \right)"
  2193. assert latex(trace(A**2)) == r"\operatorname{tr}\left(A^{2} \right)"
  2194. def test_print_basic():
  2195. # Issue 15303
  2196. from sympy.core.basic import Basic
  2197. from sympy.core.expr import Expr
  2198. # dummy class for testing printing where the function is not
  2199. # implemented in latex.py
  2200. class UnimplementedExpr(Expr):
  2201. def __new__(cls, e):
  2202. return Basic.__new__(cls, e)
  2203. # dummy function for testing
  2204. def unimplemented_expr(expr):
  2205. return UnimplementedExpr(expr).doit()
  2206. # override class name to use superscript / subscript
  2207. def unimplemented_expr_sup_sub(expr):
  2208. result = UnimplementedExpr(expr)
  2209. result.__class__.__name__ = 'UnimplementedExpr_x^1'
  2210. return result
  2211. assert latex(unimplemented_expr(x)) == r'\operatorname{UnimplementedExpr}\left(x\right)'
  2212. assert latex(unimplemented_expr(x**2)) == \
  2213. r'\operatorname{UnimplementedExpr}\left(x^{2}\right)'
  2214. assert latex(unimplemented_expr_sup_sub(x)) == \
  2215. r'\operatorname{UnimplementedExpr^{1}_{x}}\left(x\right)'
  2216. def test_MatrixSymbol_bold():
  2217. # Issue #15871
  2218. from sympy.matrices.expressions.trace import trace
  2219. A = MatrixSymbol("A", 2, 2)
  2220. assert latex(trace(A), mat_symbol_style='bold') == \
  2221. r"\operatorname{tr}\left(\mathbf{A} \right)"
  2222. assert latex(trace(A), mat_symbol_style='plain') == \
  2223. r"\operatorname{tr}\left(A \right)"
  2224. A = MatrixSymbol("A", 3, 3)
  2225. B = MatrixSymbol("B", 3, 3)
  2226. C = MatrixSymbol("C", 3, 3)
  2227. assert latex(-A, mat_symbol_style='bold') == r"- \mathbf{A}"
  2228. assert latex(A - A*B - B, mat_symbol_style='bold') == \
  2229. r"\mathbf{A} - \mathbf{A} \mathbf{B} - \mathbf{B}"
  2230. assert latex(-A*B - A*B*C - B, mat_symbol_style='bold') == \
  2231. r"- \mathbf{A} \mathbf{B} - \mathbf{A} \mathbf{B} \mathbf{C} - \mathbf{B}"
  2232. A_k = MatrixSymbol("A_k", 3, 3)
  2233. assert latex(A_k, mat_symbol_style='bold') == r"\mathbf{A}_{k}"
  2234. A = MatrixSymbol(r"\nabla_k", 3, 3)
  2235. assert latex(A, mat_symbol_style='bold') == r"\mathbf{\nabla}_{k}"
  2236. def test_AppliedPermutation():
  2237. p = Permutation(0, 1, 2)
  2238. x = Symbol('x')
  2239. assert latex(AppliedPermutation(p, x)) == \
  2240. r'\sigma_{\left( 0\; 1\; 2\right)}(x)'
  2241. def test_PermutationMatrix():
  2242. p = Permutation(0, 1, 2)
  2243. assert latex(PermutationMatrix(p)) == r'P_{\left( 0\; 1\; 2\right)}'
  2244. p = Permutation(0, 3)(1, 2)
  2245. assert latex(PermutationMatrix(p)) == \
  2246. r'P_{\left( 0\; 3\right)\left( 1\; 2\right)}'
  2247. def test_issue_21758():
  2248. from sympy.functions.elementary.piecewise import piecewise_fold
  2249. from sympy.series.fourier import FourierSeries
  2250. x = Symbol('x')
  2251. k, n = symbols('k n')
  2252. fo = FourierSeries(x, (x, -pi, pi), (0, SeqFormula(0, (k, 1, oo)), SeqFormula(
  2253. Piecewise((-2*pi*cos(n*pi)/n + 2*sin(n*pi)/n**2, (n > -oo) & (n < oo) & Ne(n, 0)),
  2254. (0, True))*sin(n*x)/pi, (n, 1, oo))))
  2255. assert latex(piecewise_fold(fo)) == '\\begin{cases} 2 \\sin{\\left(x \\right)}' \
  2256. ' - \\sin{\\left(2 x \\right)} + \\frac{2 \\sin{\\left(3 x \\right)}}{3} +' \
  2257. ' \\ldots & \\text{for}\\: n > -\\infty \\wedge n < \\infty \\wedge ' \
  2258. 'n \\neq 0 \\\\0 & \\text{otherwise} \\end{cases}'
  2259. assert latex(FourierSeries(x, (x, -pi, pi), (0, SeqFormula(0, (k, 1, oo)),
  2260. SeqFormula(0, (n, 1, oo))))) == '0'
  2261. def test_imaginary_unit():
  2262. assert latex(1 + I) == r'1 + i'
  2263. assert latex(1 + I, imaginary_unit='i') == r'1 + i'
  2264. assert latex(1 + I, imaginary_unit='j') == r'1 + j'
  2265. assert latex(1 + I, imaginary_unit='foo') == r'1 + foo'
  2266. assert latex(I, imaginary_unit="ti") == r'\text{i}'
  2267. assert latex(I, imaginary_unit="tj") == r'\text{j}'
  2268. def test_text_re_im():
  2269. assert latex(im(x), gothic_re_im=True) == r'\Im{\left(x\right)}'
  2270. assert latex(im(x), gothic_re_im=False) == r'\operatorname{im}{\left(x\right)}'
  2271. assert latex(re(x), gothic_re_im=True) == r'\Re{\left(x\right)}'
  2272. assert latex(re(x), gothic_re_im=False) == r'\operatorname{re}{\left(x\right)}'
  2273. def test_latex_diffgeom():
  2274. from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential
  2275. from sympy.diffgeom.rn import R2
  2276. x,y = symbols('x y', real=True)
  2277. m = Manifold('M', 2)
  2278. assert latex(m) == r'\text{M}'
  2279. p = Patch('P', m)
  2280. assert latex(p) == r'\text{P}_{\text{M}}'
  2281. rect = CoordSystem('rect', p, [x, y])
  2282. assert latex(rect) == r'\text{rect}^{\text{P}}_{\text{M}}'
  2283. b = BaseScalarField(rect, 0)
  2284. assert latex(b) == r'\mathbf{x}'
  2285. g = Function('g')
  2286. s_field = g(R2.x, R2.y)
  2287. assert latex(Differential(s_field)) == \
  2288. r'\operatorname{d}\left(g{\left(\mathbf{x},\mathbf{y} \right)}\right)'
  2289. def test_unit_printing():
  2290. assert latex(5*meter) == r'5 \text{m}'
  2291. assert latex(3*gibibyte) == r'3 \text{gibibyte}'
  2292. assert latex(4*microgram/second) == r'\frac{4 \mu\text{g}}{\text{s}}'
  2293. def test_issue_17092():
  2294. x_star = Symbol('x^*')
  2295. assert latex(Derivative(x_star, x_star,2)) == r'\frac{d^{2}}{d \left(x^{*}\right)^{2}} x^{*}'
  2296. def test_latex_decimal_separator():
  2297. x, y, z, t = symbols('x y z t')
  2298. k, m, n = symbols('k m n', integer=True)
  2299. f, g, h = symbols('f g h', cls=Function)
  2300. # comma decimal_separator
  2301. assert(latex([1, 2.3, 4.5], decimal_separator='comma') == r'\left[ 1; \ 2{,}3; \ 4{,}5\right]')
  2302. assert(latex(FiniteSet(1, 2.3, 4.5), decimal_separator='comma') == r'\left\{1; 2{,}3; 4{,}5\right\}')
  2303. assert(latex((1, 2.3, 4.6), decimal_separator = 'comma') == r'\left( 1; \ 2{,}3; \ 4{,}6\right)')
  2304. assert(latex((1,), decimal_separator='comma') == r'\left( 1;\right)')
  2305. # period decimal_separator
  2306. assert(latex([1, 2.3, 4.5], decimal_separator='period') == r'\left[ 1, \ 2.3, \ 4.5\right]' )
  2307. assert(latex(FiniteSet(1, 2.3, 4.5), decimal_separator='period') == r'\left\{1, 2.3, 4.5\right\}')
  2308. assert(latex((1, 2.3, 4.6), decimal_separator = 'period') == r'\left( 1, \ 2.3, \ 4.6\right)')
  2309. assert(latex((1,), decimal_separator='period') == r'\left( 1,\right)')
  2310. # default decimal_separator
  2311. assert(latex([1, 2.3, 4.5]) == r'\left[ 1, \ 2.3, \ 4.5\right]')
  2312. assert(latex(FiniteSet(1, 2.3, 4.5)) == r'\left\{1, 2.3, 4.5\right\}')
  2313. assert(latex((1, 2.3, 4.6)) == r'\left( 1, \ 2.3, \ 4.6\right)')
  2314. assert(latex((1,)) == r'\left( 1,\right)')
  2315. assert(latex(Mul(3.4,5.3), decimal_separator = 'comma') == r'18{,}02')
  2316. assert(latex(3.4*5.3, decimal_separator = 'comma') == r'18{,}02')
  2317. x = symbols('x')
  2318. y = symbols('y')
  2319. z = symbols('z')
  2320. assert(latex(x*5.3 + 2**y**3.4 + 4.5 + z, decimal_separator = 'comma') == r'2^{y^{3{,}4}} + 5{,}3 x + z + 4{,}5')
  2321. assert(latex(0.987, decimal_separator='comma') == r'0{,}987')
  2322. assert(latex(S(0.987), decimal_separator='comma') == r'0{,}987')
  2323. assert(latex(.3, decimal_separator='comma') == r'0{,}3')
  2324. assert(latex(S(.3), decimal_separator='comma') == r'0{,}3')
  2325. assert(latex(5.8*10**(-7), decimal_separator='comma') == r'5{,}8 \cdot 10^{-7}')
  2326. assert(latex(S(5.7)*10**(-7), decimal_separator='comma') == r'5{,}7 \cdot 10^{-7}')
  2327. assert(latex(S(5.7*10**(-7)), decimal_separator='comma') == r'5{,}7 \cdot 10^{-7}')
  2328. x = symbols('x')
  2329. assert(latex(1.2*x+3.4, decimal_separator='comma') == r'1{,}2 x + 3{,}4')
  2330. assert(latex(FiniteSet(1, 2.3, 4.5), decimal_separator='period') == r'\left\{1, 2.3, 4.5\right\}')
  2331. # Error Handling tests
  2332. raises(ValueError, lambda: latex([1,2.3,4.5], decimal_separator='non_existing_decimal_separator_in_list'))
  2333. raises(ValueError, lambda: latex(FiniteSet(1,2.3,4.5), decimal_separator='non_existing_decimal_separator_in_set'))
  2334. raises(ValueError, lambda: latex((1,2.3,4.5), decimal_separator='non_existing_decimal_separator_in_tuple'))
  2335. def test_Str():
  2336. from sympy.core.symbol import Str
  2337. assert str(Str('x')) == r'x'
  2338. def test_latex_escape():
  2339. assert latex_escape(r"~^\&%$#_{}") == "".join([
  2340. r'\textasciitilde',
  2341. r'\textasciicircum',
  2342. r'\textbackslash',
  2343. r'\&',
  2344. r'\%',
  2345. r'\$',
  2346. r'\#',
  2347. r'\_',
  2348. r'\{',
  2349. r'\}',
  2350. ])
  2351. def test_emptyPrinter():
  2352. class MyObject:
  2353. def __repr__(self):
  2354. return "<MyObject with {...}>"
  2355. # unknown objects are monospaced
  2356. assert latex(MyObject()) == r"\mathtt{\text{<MyObject with \{...\}>}}"
  2357. # even if they are nested within other objects
  2358. assert latex((MyObject(),)) == r"\left( \mathtt{\text{<MyObject with \{...\}>}},\right)"
  2359. def test_global_settings():
  2360. import inspect
  2361. # settings should be visible in the signature of `latex`
  2362. assert inspect.signature(latex).parameters['imaginary_unit'].default == r'i'
  2363. assert latex(I) == r'i'
  2364. try:
  2365. # but changing the defaults...
  2366. LatexPrinter.set_global_settings(imaginary_unit='j')
  2367. # ... should change the signature
  2368. assert inspect.signature(latex).parameters['imaginary_unit'].default == r'j'
  2369. assert latex(I) == r'j'
  2370. finally:
  2371. # there's no public API to undo this, but we need to make sure we do
  2372. # so as not to impact other tests
  2373. del LatexPrinter._global_settings['imaginary_unit']
  2374. # check we really did undo it
  2375. assert inspect.signature(latex).parameters['imaginary_unit'].default == r'i'
  2376. assert latex(I) == r'i'
  2377. def test_pickleable():
  2378. # this tests that the _PrintFunction instance is pickleable
  2379. import pickle
  2380. assert pickle.loads(pickle.dumps(latex)) is latex
  2381. def test_printing_latex_array_expressions():
  2382. assert latex(ArraySymbol("A", (2, 3, 4))) == "A"
  2383. assert latex(ArrayElement("A", (2, 1/(1-x), 0))) == "{{A}_{2, \\frac{1}{1 - x}, 0}}"
  2384. M = MatrixSymbol("M", 3, 3)
  2385. N = MatrixSymbol("N", 3, 3)
  2386. assert latex(ArrayElement(M*N, [x, 0])) == "{{\\left(M N\\right)}_{x, 0}}"